
A New Interface Specification Methodology

and its

Application to Transducer Synthesis

Gaetano Borriello

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
A New Interface Specification Methodology and its Application to
Transducer Synthesis

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In this dissertation, I present a new methodology for the abstract specification of digital circuit interfaces.
An interface is the collection of signal wires that cross a circuit boundary and the constraints on the events
on those wires. The specification methodology is based on a formalization of the timing diagrams
commonly used by digital circuit designers. This mostly graphical method is not only familiar to its
intended users but is also concise in its description. An interactive editor, called Waves, has been
implemented to support this methodology and used to describe a wide range of circuit interfaces ranging
from static memories, to microprocessors, to system busses. Interface specification has a wide range of uses
during the design and evaluation of a circuit. Waves diagrams and the constraints they capture form the
basis for an entire new set of CAD tools that reason about interface design, synthesis, evaluation, and
testing. One of these applications, the automatic synthesis of interface transducers, is highlighted in this
dissertation. An interface transducer is the collection of logic circuitry that connects two compatible circuit
interfaces. In general, it includes both synchronous and asynchronous components and must satisfy the
timing constraints of both interfaces. Interface transducers are required whenever a custom chip is
integrated into a computer system or in general, whenever two circuit blocks need to be connected. Their
automatic design can greatly reduce the time required to assemble systems or integrate new components
into existing systems. Janus uses a novel approach, based on a small set of templates, to synthesize mixed
asynchronous and synchronous control logic. The synthesis algorithm, called Suture, first constructs a
skeletal circuit and then locally modifies the design to meet interface timing constraints and eliminate
internal race conditions. Optimizations of the resulting sequential logic yield transducers that are
comparable in both size and performance to those generated by experienced designers. Three practical
examples are used to demonstrate this result.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

224

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright @ 1988, Gaetano Borriello.

All rights reserved.

ii

A New Interface Specification Methodology

and its

Application to Transducer Synthesis

by
Gaetano Borriello

B.S. (Polytechnic Institute of New York) 1979
M.S. (Stanford University) 1981

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY
in

COMPUTER SCIENCE

in the

GRADUATE DIVISION
OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

Approved: Randy H. Katz (Chairman)
Carlo H. Sequin
Alice M. Agogino

Filed:

May 26,1988
May 25,1988
May 24,1988

May 26,1988

Research supported by the University of California under a Microelectronics Fellowship and

the Defense Advanced Research Projects Agency under Contract No. N00039-83-C-0107.

iii

IV

A New Interface Specification Methodology
and its

Application to Transducer Synthesis

ABSTRACT

In this dissertation, I present a new methodology for the abstract specification of digital circuit

interfaces. An interface is the collection of signal wires that cross a circuit boundary and the

constraints on the events on those wires. The specification methodology is based on a

formalization of the timing diagrams commonly used by digital circuit designers. This mostly

graphical method is not only familiar to its intended users but is also concise in its description.

An interactive editor, called Waves, has been implemented to support this methodology and

used to describe a wide range of circuit interfaces ranging from static memories, to

microprocessors, to system busses.

Interface specification has a wide range of uses during the design and evaluation of a circuit.

Waves diagrams and the constraints they capture form the basis for an entire new set of CAD

tools that reason about interface design, synthesis, evaluation, and testing. One of these

applications, the automatic synthesis of interface transducers, is highlighted in this

dissertation.

An interface transducer is the collection of logic circuitry that connects two compatible circuit

interfaces. In general, it includes both synchronous and asynchronous components and must

satisfy the timing constraints of both interfaces. Interface transducers are required whenever

a custom chip is integrated into a computer system or in general, whenever two circuit blocks

need to be connected. Their automatic design can greatly reduce the time required to assemble

systems or integrate new components into existing systems.

Janus uses a novel approach, based on a small set of templates, to synthesize mixed

asynchronous and synchronous control logic. The synthesis algorithm, called Suture, first

constructs a skeletal circuit and then locally modifies the design to meet interface timing

constraints and eliminate internal race conditions. Optimizations of the resulting sequential

logic yield transducers that are comparable in both size and performance to those generated by

experienced designers. Three practical examples are used to demonstrate this result.

v

A miopadre

vii

V111

ACKNOWLEDGEMENTS

First and foremost I must thank my advisor, Randy Katz, for taking a chance on me when I

first came to Berkeley and helping me get over the rough spots of the last four years. Many

thanks also go to the remainder of my dissertation committee Alice Agogino, Alberto

Sangiovanni-Vincente IIi, Carlo Sequin, and Mark Stefik for their superb guidance and advice.

A special acknowledgement to my friends from my days at the Xerox Palo Alto Research

Center: Lynn Conway, Mary Hausladen, Richard Lyon, Alan Paeth, and Mark Stefik. They

continuously expanded my horizons and made PARC an incredibly enlightening and exciting

place.

The work presented in this dissertation benefitted greatly from many discussions with my

friends and colleagues. Among these I must especially thank David Wood, Richard Rudell,

David Gedye, and Fred Obermeier for letting me sound them out on many half-baked ideas.

To me, my writing still leaves much to be desired. Without the help of David Gedye, Randy

Katz, Robert Mayo, and Melissa Westbrook, it may never have become presentable.

My time at Berkeley was made enjoyable and memorable by great friends. They are too

numerous for me to include them all, but I must mention Margaret Butler, Gregg Foster,

Susan Eggers, David Gedye, Garth Gibson, Mark Hill, James Larus, Robert Mayo, Fred

Obermeier, Stuart Sechrest, and David Wood.

My parents, Rosa and Cristoforo, are the best anyone can ever hope to have. They have

constantly supported and encouraged me in all my efforts, helping me through my life with

their inexhaustable love and affection. I only hope that I may be half as selfless with my own

children.

No thanks are enough for my wife, Melissa. Her companionship, love, and support made

finishing this work easier and more pleasant than I could have hoped.

And lastly, a special thanks to my son, Cristoforo Samuel, who arrived in time to catch the

final moments and put this effort in proper perspective.

ix

X

CONTENTS

1. Introduction ... 1

1.1. Circuit Interfaces and their Specification .. 2

1.1.1. Interface Specification .. 3

1.1.2. Applications of the Specifications4

1.2. Interface Transducer Synthesis ... 5

1.2.1. A BriefExample .. 5

1.2.2. Summary ofResults .. 8

1.3. Organization of this Dissertation ... 9

-PART!-

2. Interface Specification ... 13

2.1. Circuit Interfaces as Collections of Constraints .. 14

2.1.1 Logical Constraints .. 14

2.1.2 Timing Constraints .. 15

2.2. Requirements for Interface Specification .. 17

2.2.1. Specification of Event Sequences ... 17

2.2.2. Co-routine Model for Combination ... 18

2.2.3. Expressibility ofHDLs ... 18

2.3. Related Specification Work .. 19

2.3.1 Hardware Description Languages .. 19

2.3.2 State Graphs and Petri Nets .. 25

2.3.3 Temporal Logic .. 27

2.4. Formalized Timing Diagrams- A New Approach ... 31

3. Waves ... 33

3.1. A Formalized Timing Diagram Editor ... 34

3.2. The Basic Waves Diagram .. 35

3.2.1. The Signal Name Window .. 36

3.2.2. The Trace Window .. 37

3.2.3. The Time Line Window ... 38

3.2.4. The Feedback Window .. 39

3.2.5. The Title Window .. 39

3.2.6. The Waves Icon ... 40

3.3. Extensions for Interface Specification ... 41

3.3.1. Representation of Arbitrary Logic Circuitry .. .41

3.3.2. Conditional and Looping Event Sequences .. 44

3.3.3. CombinationofDiagrams ... 47

XI

3.4. Applications ofWaves ... 49

3.4.1. Interface Documentation .. 49

3.4.2. Interface Design .. 50

3.4.3. Simulation and Testing .. 51

3.4.4. Synthesis oflnterface Circuitry ... 53

- PARTII-

4. Transducer Synthesis ... 57

4.1. Interface Transducers ... 58

4.1.1. Interface Operations ... 58

4.1. 2. Specification of Transducer Behavior .. 59

4.1.3. Automatic Synthesis of Transducers ... 60

4.2. Related Synthesis Work ... 62

4. 2.1. Synthesis from Algorithmic Specifications .. 63

4.2.2. Synthesis from lnputJOuput Specifications ... 68

4. 3. Suture- A New Synthesis Method ... 72

4.3.1. Overview of the Method .. 73

4.3.2. Examples of its Application .. 77

5. Janus .. 87

5.1. A Synthesis Tool for Interface Transducers ... 88

5.1.1. Specification Using Waves Diagrams .. 89

5.1.2. Limitations of the Implementation .. 90

5.2. Generation of the Event Graphs ... 92

5.2.1. Merge Points ... 93

5.2.2. Intervals ofOccurance .. 93

5.2.3. Interconnection of Operation Graphs ... 95

5.2.4. Timing Constraint Translations .. 97

5.2.5. Compression ofSynchronous Events ... 98

5.2.6. Splitting of Signals ... 100

5.2.7. Extraneous Events .. lOl

5.3. Synthesis of the Data Path Circuitry ... 102

5.3.1. Data Transfers Through the Transducer ... 102

5.3.2. Multiplexed Data Transfer Paths .. 102

5.4. Synthesis of the Control Circuitry ... 104

5.4.1. Synthesis of the Skeletal Circuit .. l04

5.4.2. Local Corrections for Constraint Satisfaction ... 105

5.4.3. Local Corrections for Race Elimination ... 106

5.5. Extensions for Conditionals and Loops .. 109

5.6. Logic Optimization ... 110

5. 6.1. Merging Across Operations .. 11 0

5.6.2. Sequential Logic Optimizations ... 111

xii

- CONCLUSION -

6. Conclusions and Contributions .•••••••••••...•.•.•.....•....•••.....••.•.•.•...••••••••••••••••••••••.•••••••••..•.. 115

6.1. Summary of Contributions ... 116

6.1.1. Interface Specification .. 116

6.1.2. Transducer Synthesis ... 117

6.2. Directions for Future Research .. 119

6. 2.1. Interface Specification .. 119

6.2.2. Application oflnterface Specifications .. 120

6.2.3. Transducer Synthesis ... 120

6.2.4. Summary ... 122

6.3. Closing Comments .. 123

- APPENDICES -

A. Waves Implementation .. 127

A.l. Implementation Medium ... 128

A.2. Decal Windows ... 130

A.3. Specification Dialog Windows ... 132

A.4. Constraint Checking .. 135

A.5. Diagram Editing Support .. 137

A.6. Diagram Regions .. 139

A.7. Waves Object Classes ... 141

A.B. Portability Issues ... 143

B. Waves Specification Examples ... 145

B.l. The Intel Multibus ... 146

B.1.1. Slave Read .. 146

B.1.2. Slave Write ... 147

B.1.3. Arbitration ... 148

B.1.4. Master Read .. 149

B.1.5. Master Write .. 150

B.2. The Multibus Design Frame .. 151

B.2.1. Slave Read .. 151

B.2.2. Slave Write ... 152

B.2.3. Master Read .. 152

B.2.4. Master Write .. 153

B.3. 2-Phase and 4-Phase Protocols .. 154

B.3.1. 2-Phase Protocol ... 154

B.3.2. 4-Phase Protocol ... 155

xiii

B.4. SPUR PCC-SBC Interface .. 156

B.4.1. Clock Signals .. 157

B.4.2. PCC to SBC Request ... 157

B.4.3. SBC to PCC Request ... 159

B.4.4. Cache Handshaking ... 160

B.S. The Texas Instruments NuBus .. 161

B.5.1. Arbitration ... 161

B.5.2. Master Read .. 162

B.5.3. Master Write .. 164

B.6. The Motorola 68000 .. 165

B.6.1. Read .. 165

B.6.2. Write ... 166

B.7. Static RAM ... 167

B. 7.1. Read .. 167

B.7.2. Write ... 168

C. Janus lmplementation .•... 169

C.l. Janus Object Classes .. 170

C.2. Validation oflnput Specifications ... 172

C.3. Event Graph Browser ... 173

C.4. Representation of the Circuit Library ... 175

C.5. Simulation and Validation .. 177

C.6. Portability Issues ... 178

D. Janus Synthesis Examples ... 179

D.l. The Multibus Design Frame .. 180

D.l.l. Event Graphs ... 180

D.1.2. Janus and Designer Generated Circuits ... 184

D.1.3. Summary and Comparison .. 190

D.2. 2-Phase to 4-Phase Protocol Adapter .. 192

D.2.1. Event Graph ... 193

D.2.2. Janus and Designer Generated Circuits ... 194

D.2.3. Summary and Comparison .. 195

D.3. SPUR PCC-SBC Interface ... 196

D.3.1. Event Graphs ... 196

D.3.2. Janus and Designer Generated Circuits ... 198

D.3.3. Summary and Comparison .. 200

References .. 201

Part! .. 202

Part II ... 204

Appendices ... 206

xiv

FIGURES

1.1. An Example Waves Specification ... 6

1.2. An Example Synthesized Transducer .. 7

2.1. Excerpts from the Intel Multibus Specification ... 21

2.2. SLIDE Multibus Master Read Specification .. 22

2.3. BSIIISPS Multibus Master Read Specification .. 23

2.4. ADAM Multibus Master Read Specification .. 25

2.5. I-net Multibus Master Read Specification .. 26

2.6. CCS Multibus Master Read Specification .. 27

2.7. Temporal Logic Multibus Master Read Specification .. 28

2.8. Regural Expression Multibus Master Read Specification ... 29

2. 9. Formalized Timing Diagram Specification .. 32

3.1. A Sample Waves Diagram .. 35

3.2. A Signal Name Window .. 36

3.3. A Trace Window .. 37

3.4. A Time Line Window ... 38

3.5. A Feedback Window .. 39

3.6. A Title Window .. 39

3.7. The Waves Icon and Diagram Menu ... 40

3.8. A Diagram with a Computed Signal... .. 43

3.9. The Waves Boolean Expression Menu44

3.10. A Diagram with Looping and Conditional Segments45

3.11. A Time Line Window with Nested Segments ... 46

3.12. An Example ofDiagram Combination .. .48

3.13. Compatibility of Synchronous Waveforms ... 51

4.1. An Interface Transducer ... 58

4.2. A Y -Chart for Transducer Synthesis .. 62

4.3. BSIIISPS Specification for an Example Transducer .. 65

4.4. Scheduled VT-bodies for the Specification of Figure 4.3 .. 66

4.5. Synthesized Circuit for the Example of Figure 4.3 .. 67

4.6. STG Specification for an Example Control Circuit .. 70

4.7. Synthesized Circuit for the Example of Figure 4.6 .. 70

4.8. Circuit Templates Used by the Suture Method .. 7 4

4.9. Examples of Sequential Logic Transformations .. 76

4.10. Waves Specification for a Three-Bit Counter ... 77

4.11. Event Graph for the Counter of Figure 4.9 ... 78

4.12. Circuit Synthesized by Suture from Graph of Figure 4.9 .. 79

4.13. Waves Specification of the Example of Figure 4. 6 ... 80

XV

4.14. Event Graph for the Example of Figure 4.13 ... 80

4.15. Circuit Synthesized by Suture from Graph ofFigure 4.14 .. 81

4.16. Waves Specification of the Transducer of Figure 4.3 ... 82

4.17. Event Graph for the Example of Figure 4.16 ... 83

4.18. Circuit Synthesized by Suture from Graph of Figure 4.17 .. 84

5.1. A Y-chartforJanus ... 88

5.2. The Janus Icon and Menu ... 89

5.3. A Janus Interface Transducer Icon ... 90

5.4. Example oflntervals ofOccurrence .. 94

5.5. Interconnection of Event Graphs .. 96

5.6. Example of Timing Constraint Translation ... 98

5.7. A Specification of Compressible Synchronous Events ... 99

5.8. Template Changes for Compressible Events .. 99

5. 9. Splitting of a Tri-statable Signal .. 100

5.10. A Multiplexed Data Transfer Path ... 103

5.11. The Implementation of an Output Signal Latch .. 104

5.12. Addition ofTiming Constraint to Improve Checking .. 106

A.1. The Decal Window Object Class Inheritance Lattice ... 133

A.2. A Specification Dialog Window .. 133

A.3. Examples of Constraint Violations ... 136

A.4. Waves Diagram Scrolling ... 138

A. 5. Waves Diagram Regions ... 139

A.6. Waves Object Class Inheritance Lattice ... 141

B.1. The Multibus Slave Read Operation .. 146

B.2. The Multibus Slave Write Operation ... 147

B.3. The Multibus Arbitration Sequence ... 148

B.4. The Multibus Master Read Operation .. 149

B.5. The Multibus Master Write Operation ... 150

B.6. The Multibus Design Frame Slave Read Operation .. 151

B.7. The Multibus Design Frame Slave Write Operation ... 152

B.S. The Multibus Design Frame Master Read Operation .. 152

B.9. The Multibus Design Frame Master Write Operation .. 153

B.10. The 2-Phase Protocol ... 154

B.11. The 4-Phase Protocol ... 155

B.12. The SPUR PCC and SBC Clock Signals ... 157

B.13. The SPUR PCC-to-SBC Request Operation ... 158

B.14. The SPUR SBC-to-PCC Request Operation ... 159

B.15. The SPUR PCC-SBC Cache Handshaking Operation ... 160

B.16. The N uBus Arbitration Sequence .. 162

B.17. The NuBus Master Read Operation ... 163

xvi

Bo18o The NuBus Master Write Operation .. oooooooooooooooo164

Bo190 The Motorola 68000 Read OperationooooooooooooooooOooooo oo oo oooooooooooooooooooooooooooooooo165

Bo200 The Motorola 68000 Write Operationoo .. oo oo oo oooooooo ooo166

Bo21. The Lattice Logic SR64K4-35 Read Operation oooooooooooooooooooooo167

Bo22o The Lattice Logic SR64K4-35 Write Operation oo OOOOOoOo0o00000000000000000000000168

Co1o Janus Object Class Inheritance Latticeoo oo .. ooooOoOO ooooooooooooooooooooooOo000000170

Co2o Janus Event Graph Browser oo oo oooooooOoooOo0000000oOOOOOO ooooooooOOOoOOOOOOOOOoOOOOOOoooooooooooo174

Dol. Event Graph for the Slave Read Operation ofMDFooOOOoOOOOOOOOOo000000000000000000000000ooooooooooo180

Do2o Event Graph for the Slave Write Operation ofMDF OOOoOOOOOOOOOOOOooOOOOOOOOOOOOOOOOOOOOooooooooooo181

Do3o Event Graph for the Master Read Operation ofMDF oooooooooooooooooooooooooooooooooooo oooo182

Do4o Event Graph for the Master Write Operation ofMDF ooooooOOOOooOOooooooooOOOOooOOOOOOOOooooooooooo183

Do 5o Manually Designed Circuit for MDF (Part I) ooooooooooooooOOOOOOOOOOOOOOooooOOOOOOOOOOOOOOOOOOooooOOooooo184

Do6o Manually Designed Circuit for MDF (Part II)ooooooooooooooooooooOOOOOOOOooooooooOOOOOOOOOOOOoooooooooooo185

Do7o Janus Designed Circuit for MDF (Part I) ooo186

Do8o Janus Designed Circuit for MDF (Part II) ooooooooooooooooooooooooOoooOo00ooOoOoOOOOOOOOOOOOOOOOoooooooooooo187

Do9o Janus Designed Circuit for MDF (Part Ill) oooooo oooooo ooooooooOo0000000000000000ooOOOOoo0000188

Do10o Janus Designed Circuit for MDF (Part IV) OOOOOOOoOOOoOoOoOOOoOOOOOOOoOOoo .. ooooooooooOOOOOOoooooooooooooo189

Do11. Waves Diagrams for Double Handshake Operation OOooOOOoOOOOOOOOOoooOOOOOOOOOOOOOOOOOOooooOOoooo00192

Do12o Event Graph for the Double Handshake Operationooo193

Do13o Manually Designed Circuit for Protocol Adapter 0000 0000 00 oo 00 0000000000 000000000000000000000000194

Do14o Janus Designed Circuit for Protocol Adapter ooooooooooOOooOOOOOOOoOOOOOOooOOOOOOOOOOOOOOOOOOOOOOOOOOooOOo194

Do15o Event Graph for the PCC-to-SBC Request Operation ooo196

Do16o Event Graph for the SBC-to-PCC Request Operation ooooooooooooooooooooooooooooooooOOOOooooooooooo197

Do170 Event Graph for the Cache Handshaking OperationooooooooooooOOOOooooooOOooOoOOOOOOOOOOooooooooooo197

Do180 Manually Designed Circuit for SP'C'R PCC-SBC Interface OOOOOOOOooOOOoOOOOOOOoOOOOOOoo000000000198

Do190 Janus Designed Circuit for SPUR PCC-SBC Interface OOOOOOOooooooooooooooooooooooooooooooooo199

TABLES

1.1. Comparison of Janus and Experienced Designers 00 00 00 00 .. 00 00 OOOoOoooooooooOO OoOOOOOOOOOOooooooooooooooo 8

201. Classification of Timing Constraints 00 00 00 0 00 .. 00 00 0 0 00 0 0 0 0 00 .. 00 0 00 0 00 00 00 .. 00 00 0000 00 00 00 00 00 00 00 00 00 00 00 .. 00 0 16

501. Time Interval Update for Neighboring Nodes oooo oo .. oooooooo .. ooooooooooooooooooooooooooooooooooooooo 95

Dol. Comparison of Circuits for Multibus Design Frame .. ooooooooooOoOOOOoooooooooooooooooooooooooooooooo190

Do2o Comparison of Circuits for Protocol Adapter ooOOOOOOooooooooooOOooOoOoOOooooooooooooooooooooooooooooooooo195

Do3o Comparison of Circuits for SPUR PCC-SBC Interface 00000000 oooooooooooooooooooooooooooo 200

xvii

xviii

Introduction 1

Circuit interfaces are an important design abstraction. However, although they are critical to

both circuit function and performance, there has been little work by the computer-aided design

(CAD) community that directly addresses issues of circuit interface specification and design.

An appropriate specification methodology can elevate circuit interfaces to first-class design

objects alongside circuit logic and serve as the foundation for an entirely new class of CAD

tools for interface design. In this dissertation, I develop an interface specification methodology

and demonstrate its utility by automating the logic design of interface transducers, the glue

logic that connect two interfaces together. The automatic generation of these circuits required

the development of new synthesis algorithms that handle both synchronous and asynchronous

circuits and timing constraints on their operation.

This chapter is divided into three sections. In the first section, I will introduce the special

nature of circuit interfaces and discuss why a specification method that emphasizes the

properties of circuit interfaces is needed. The section makes a case for a specification method

that emphasizes the properties of circuit interfaces and describes the of use of the

specifications in interface CAD tools. The second section outlines one of these applications, the

automatic synthesis of interface transducers. It highlights the novel features of the synthesis

algorithms developed for this class of circuits and uses a small transducer example to

illustrate the form of the initial specification and the resulting logic circuit. A table of results

on larger examples shows that the synthesized circuits are comparable in both size and

performance to those generated by experienced designers. The third section concludes the

chapter with some notes on the organization of the remainder of this dissertation.

Circuit Interfaces and their Specification 1.1

A circuit logic block is typically defined by its internal hardware, the logic gates and storage

elements that determine the circuit's function. However, this internal view is only part of a

complete deimition. The other, complementary part, is how the circuit is viewed by

surrounding circuitry through its interface, the signal wires that cross the boundary of the

logic block. This external view of the circuit is a collection of constraints on these signal wires.

No formal or generally accepted definition of a circuit interface exists. In the context of this

dissertation, a circuit interface is simply a collection of sets of constraints on the signal wires

that cross the periphery of a logic block. Each set corresponds to an interface operation, a

semantic entity that consists of a sequence of events, the changes in logic level, that represents

the exchange of information (i.e., communication) with the circuit's environment. The

interface is not concerned with the semantic meaning of the operations but only with the

events that must occur and the data that must be transferred. It is also independent of the

interface circuitry, the internal logic that may use the signals as inputs or generate them as

outputs.

The design of circuit interfaces and interface circuitry is as important as the design of internal

circuit logic. A circuit interface can be viewed as a contract between a circuit and its

environment. If the contract is not met, then the circuit will not be able to communicate with

its surroundings and will be useless. If the contract is not met well, then communication

might not proceed fast enough to be practical.

The interface designer must try to define an interface contract, embodied by the interface

constraints, that can be met easily and efficiently, with a minimum amount of overhead on the

size and complexity of the internal circuitry. Since for a given interface there can be many

possible internal implementations that meet the constraints, the interface circuitry designer

must try to find an implementation of the interface circuitry that is efficient in both the

technology used to realize the logic and in the way it complies with the interface contract.

Communication across the interface may proceed faster or slower depending on how the

constraints are met.

Therefore, interface specification is the description of the constraints on the interface signals.

These constraints take many forms that range from the behavioral level -focusing on the

sequencing of events- to the details of electrical requirements and proper physical packaging

and connections. Traditional hardware description languages are inadequate for interface

specification. They emphasize the description oflogic circuits and their physical realization in

hardware and usually do not provide mechanisms for the specification of abstract constraints.

Circuit interfaces actually have more general applicability than circuit logic. By definition

every logic circuit has an interface, however, a circuit interface can exist independently of any

logic blocks. Bus structures are a common example of a system component with an interface

2 1 -Introduction

but no associated circuitry. A bus specification is solely a collection of constraints and there

may not be any associated logic circuitry.

Interface Specification 1.1.1

Interface specifications provide information that is complementary to circuit specification.

The interface description of a logic block can be used to generate stimulus vectors for

simulators and testers, to verify that two blocks to be connected are compatible, to

automatically generate interface circuitry, and to document a design.

Although interface specification is clearly important and many useful tools could be developed

to help designers deal with interface issues, there has been little work in the area of interface

specification. Most attempts have fallen into one of three categories: extensions to existing

hardware description languages (HDLs), the adaptation of Petri nets and other state graphs,

and temporal logic specifications.

Each category has its own disadvantages. Because HDLs concentrate on circuit function many

interface constraints can become embedded in the logic description. If interface details are not

explicitly factored out, it is difficult, if not impossible, to exploit the interface specification for

design. Specialized languages have been developed for asynchronous interfaces, an aspect

missing from many HDLs, but these languages are usually awkward for synchronous

interfaces. Petri nets have also been used to specify asynchronous behavior and sequencing of

events but usually ignoring timing constraints. Temporal logic offers a more formal

methodology that unfortunately becomes extremely cumbersome when timing constraints are

introduced. A problem common to all the categories is the unfamiliarity of designers with the

specification language and its idiosyncracies. These approaches are described in more detail

in section 2.3.

What is needed is a specification method that covers both synchronous and asynchronous

circuits, can handle timing information, is natural and concise for designers to use and, most

importantly, stresses the specification of interface constraints over the specification of logic

circuitry. In this dissertation, I describe such a method based on timing diagrams.

Timing diagrams are a familiar form of specification for logic designers. The major

components of timing diagrams- the shapes of the waveforms and the timing constraints

between the changes in logic level- properly emphasize the most important aspects of circuit

interfaces. If the diagrams can be formalized to include all the information necessary for

interface specifications, then they can provide just the specification method required.

The Waves timing diagram editor provides this formalization. It is an interactive editor that

directly supports the many types of timing constraints encountered in interface specifications.

The editor informs the user of any constraint violations in the drawn waveforms and has

application in interface design and documentation as well as specification.

Circuit Interfaces and their Specification- 1.1
3

Applications of the Specifications 1.1.2

Circuit interface specifications form a foundation upon which tools that reason about interface

issues can be built. The classes of tools range from documentation and exploratory design aids

to automatic interface design and synthesis tools and are useful through all stages of the

design process from initial evaluation through integration and testing.

Waves diagrams are an excellent medium for communicating with interface CAD tools. The

diagrams are not only familiar to designers, they also provide dialogue and error reporting

capabilities between the user and the tools. Signal events and constraints can be highlighted

on the diagrams rather than directing the designer to the object of interest through textual

cues in an HDL. The two dimensional nature of the diagrams is also a better match for

expressing the constraints between signal waveforms than a linear HDL program.

In the early stages of design, Waves diagrams are a spreadsheet-like tool for experimenting

with prototypes of the interface specification. An initial sketch of the desired waveforms can

be drawn and timing constraints attached to events. Then the designer can vary the positions

of some events and see if any timing constraints are violated. The period (or duty cycle) of a

clock can be changed to view the effect of different system timing schemes. This is especially

helpful when there are interactions with asynchronous signals to consider.

If an interface specification is associated with all system components, then whenever two

blocks are to be connected their interfaces can be checked for compatibility. This is an

important capability when members of a large design team are simultaneously working on

different parts of the design. Slight inconsistencies in circuit connections are a common cause

of design bugs.

This leads to a set of tools that can handle incompatibilities and modify or add circuitry to

correct the problem. One such tool is an interface transducer synthesizer. An interface

transducer is the glue logic that connects two circuit blocks. Glue logic is common in most

systems and especially in those with many components at high levels of integration.

Automatic synthesis of interface transducer logic can greatly reduce the design effort in

integrating a new custom chip into an existing environment. This enables the rapid

prototyping of system components, their evaluation in-situ, and their faster introduction into

the marketplace.

Finally, tools that deal with simulation and testing issues are made possible. Today, when a

chip is tested or a simulation performed the collected output vectors are compared to a

sequence of expected vectors. However, this is not the real objective ofthe test. Rather, we

test to determine whether the changes in logic level on the output vectors meet the ordering

and timing constraints on the events of the interface, not whether they precisely match one of

many possible sequences of acceptable expected outputs. Timing diagrams can be used to

directly generate input vectors and then verify that the output vectors do actually meet the

constraints.

4 1 -Introduction

Interface Transducer Synthesis 1.2

The application of circuit interface specifications highlighted in this dissertation is the

automatic synthesis of interface transducers. Transducers require synthesis methods that

differ in two important ways from current methods. First, they need to be able to handle the

design of both synchronous and asynchronous components. And second, the synthesized

circuits must respect interface timing constraints.

The tool I implemented to perform this task is called Janus. Two interface specifications, in

the form of collections of Waves diagrams, are provided as input to Janus. It then generates a

specification of the sequential logic that will implement the connection between the two

interfaces. Future tools to be integrated with Janus, will use Waves diagrams to interact with

the user during the synthesis process and to compose simulator commands to validate the

generated circuitry.

The control logic synthesis algorithm in Janus is called Suture and it differs from classical

synthesis algorithms in several ways. First, in the early states of synthesis, synchronous and

asynchronous signals are treated in exactly the same fashion. Second, rather than attempting

to generate a correct circuit directly, the Suture algorithm constructs a skeletal circuit that

may have timing constraint violations and race conditions. Later passes over the circuit

correct these problems. Lastly, there is no attempt to generate a dense circuit in the early

stages of the algorithm, rather, local transformations are used to reduce the size of the

sequential logic once a correct circuit has been generated.

Janus prepares the input to Suture. An event graph is derived from the Waves diagrams of the

interface specifications. Janus interconnects the graphs, based on data transfer through the

transducer, and calles the Suture algorithm as a subroutine. The transducer is designed

piecemeal, a complete logic block is separately generated for each interface operation. Janus

then combines and optimizes the resulting circuitry into a single circuit.

A Brief Example 1.2.1

An example of the use of Waves and Janus is the problem of connecting a synchronous

microprocessor to an asynchronous system bus. Figure 1.1 shows three Waves diagrams that

are part of the transducer specification. The first diagram describes the read operation as it is

seen at the the interface of the microprocessor. The other two diagrams show the details of

arbitrating for the system bus - a synchronous process - and the specification for the read

operation as seen on the bus, an asynchronous process.

Interface Transducer Synthesis- 1.2
5

V1ew Options:
OA SPI TC

L.;Ut: 4Se
c~nt: 456 at: o

0Phi2

nnn MRD .0

nnn ADRO[O: 19] .a

nnn MACK 0.

nnn DA TI[O: 15] 0.

(Y BCLK* .a

"""BREQ* 0.

nnn CBRQ* 0.

nnn BUSY* +

nnn BPRN* .a

~ BPRO+ 0.

:: ADR[0:1'3]~ -~

BHEN*

ADR[0:19]+

MRDC*

DA T[O: 15]* .0

XACK+ .0

I
0
I

100
I

200
I

300
I

400
I

500
I

600
I

700
I

I
eoo

I

1<--(1 @P~i2min~,\~ .. .

:::::::::~::::·::<: : ::::A.~:~:f.~}~:: : :::: ,:x:: : : : :h;cz:~~~;:~·:: :::::::::: ·:·~; ~~~:i:~;::: :::::?:: :::: ::::: ·:::::

1<--(1 @Phi2min~

'"'· ·."'"'·-:"'"':-:"'"'-: :""··-:'"'"·-:'"'"-: .'"'"··:-'"": :-"'"'":-:"'"'":-:·"'"'·"'"'· ·"'"'· ·"'"'· . ..,... _,..._,..,._ ,.,-.. '"'"· . -:-:-. _.,..,.,..,..,..,..,., __ ·"'"'·:-:..,..-:-:"'":-,..,..,.,:-: :-:a 0 e.ta a :-:·

(1 OOmax::r+f .)"-: ..

·:~~~:~:.:~7J7rfi:ax~
··································

Figure 1.1 Waves diagrams corresponding to the master read operation of the Multibus

Design Frame [Borriello85]. The top diagram is the operation as seen by one side of the

transducer, a custom synchronous microprocessor. The other two represent the master

read operation as seen on the Intel Multibus [lntel82]. One describes arbitration for the

bus and the other the details of the data transfer.

These three diagrams are the input to Janus and correspond to only one of the many

operations performed across this interface. Janus requires corresponding diagrams for both

interfaces for each operation that the transducer is to support. Not all of the specification is

6 1 -Introduction

visible in the diagrams and many constraints are not displayed but entered and modified

through the graphical cues on the diagram.

MRD MROfi BREQ"! s Q MRD!

Q BREQ* OPDisable R"

BREQ*
R*

BUSY"o MRoc•fi Q MRDC*!

MRD
OPDisable R*

CBRQ*! s
BREQ* Q CBRQ*
CBRQ* R* MACKfi
BUSY*i

Q MACK!

BPRN*
OPDisable R*

BREQ*
CBRQ* BREQ•fi BUSY"i
BPRN*

Q BREQ*!

BUSY" OPDisable R*

BREQ* oc
=ADR* =ADR*
MRDC* = BHEN*

= MRDC* CBRQ•fi Q CBRQ*I

=ADR*
OPDisable R*

MRDC*
MRDC"! s

Q MRDC"

XACK"
R*

MRDC" ADRO ADR"

MRD MRD

XACK"
MACK! s

Q MACK
R*

MACK ~DATI

XACK" --t>o
OAT• LC:S)J

BREQ* ~ BPRO*
10

BPRN"

"0" --[)-- BHEN*

-I = BHEN*

MRD ~ OPDisable
MACK Q (force outputs to
BUSY" R quiescent states)
MACK!

Figure 1.2 Circuitry synthesized by Janus from the Waves diagram specifications of

Figure 1.1. The circuitry is shown before any optimizations. Appendix D provides more

details for this and other examples.

The circuitry synthesized by Janus is shown in Figure 1.2. As is typical with interface

transducers, the circuitry is not particularly large. However, it is complex in its

interconnections and in the timing constraints that are enforced by this particular

arrangement. The large number of constraints and interactions is what makes interface

Interface Transducer Synthesis- 1.2
7

transducer design complex and error-prone. Janus is meant to relieve the designer of the

concerns associated with this myriad of details by using the constraints to synthesize the

circuit automatically.

In this example, Janus generates circuitry that is only 11% larger than that generated by an

experienced human designer. But more importantly, the performance of this interface

transducer, obtained by measuring the elapsed time for the transaction, is 9% better than the

human-generated design. This can be traced to a simplification made by the designer that

greatly reduces the amount of parallelism in the circuit (and the number of interactions). In

fact, 40% of the extra circuitry is generated by Janus to handle this parallelism.

Summary of Results 1.2.2

Janus emphasizes performance, the most important aspect of a circuit interface. The

performance of an interface transducer is determined by its communication bandwidth. A

good transducer maximizes the bandwidth by allowing the events to occur as fast as the

interface constraints will permit. As can be seen in Table 1.1, the performance of the

Janus-generated circuitry is at least as good or better as the human-generated circuitry for

each of three practical examples. In regard to circuit size, Janus is within 20% of the

implementations realized by experienced designers. It is important to note that although

circuit size is always important, it is less so for interface transducers than other parts of a

design. Transducers are not replicated as are many other components, therefore, a slightly

larger circuit is usually tolerable. The specifications and resulting circuits for each of the

examples ofTable 1.1 are described in detail in Appendices Band D.

8

Example

Multibus Design Frame

2-Phase to 4-Phase Protocol Adapter

SPUR PCC-SBC Interface Unit

Performance

1.09

1.00

1.00

Size

1. 11

0.61

0.89

Table 1.1 Comparison of the results of Janus and experienced designers for three

examples (ratioes are Janus/Designer). Performance is in terms of maximum throughput

(shortest duration for the interface operations). Size is in terms of total number of logic

gates. The examples are described in detail in Appendix D.

1- Introduction

Organization of this Dissertation 1.3

This dissertation is organized into two principal parts bracketed by this introduction and a

summary. Interface specification is the subject of Part I, which consists of the next two

chapters. Chapter 2 presents a set of requirements for a circuit interface specification method,

describes previous work in this area, outlines a method based on timing diagrams that meets

the requirements, and lists the many CAD tools that can be developed based on the substrate

of a complete interface specification methodology. Chapter 3 discusses the Waves editor and

how it formalizes timing diagrams so that a designer can specify circuit interfaces as described

in Chapter 2.

Transducer synthesis is the subject of Part II. This part of the dissertation has a similar

organization to Part I and is also composed of two chapters. Chapter 4 presents the problems

associated with transducer synthesis and explains how previous approaches are inadequate for

the task. It then introduces Suture, a new synthesis method that can automatically synthesize

the control logic of interface transducers. Chapter 5 is a detailed description of Janus, the

interface transducer synthesizer I have implemented. Janus uses the Suture method as a

subroutine: generating the input to Suture from the collection of Waves diagrams that specify

the transducer and optimizing the sequential and combinational logic output by the synthesis

method. The details of the graph algorithms used in Suture are also presented in this chapter.

The dissertation concludes with Chapter 6 which describes the contributions of this work and

how it builds on previous efforts. The chapter also outlines some avenues for future research

into both the application of interface specifications and extensions to the circuit synthesis and

optimization techniques developed in Janus. A set of appendices provide supplementary

information on the implementation of both Waves and Janus. They include collections of

practical examples of interface specification and transducer synthesis that can be used in

evaluating this work.

Organization of this Dissertation- 1.3
9

<This page intentionally left blank.>

10 1 -Introduction

PART I

11

<This page intentionally left blank.>

12

Interface Specification 2

Interface specifications complement circuit specifications. While a circuit specification

emphasizes the internal function of a circuit block, an interface specification focuses on the

interactions between the circuit and its environment. Circuit logic specifications are

collections of Boolean logic equations and memory requirements. Circuit interface

specifications are collections of constraints on signal wires in the physical, electrical, logical,

and timing domains. Formalized timing diagrams can be used to graphically represent the

logical and behavioral constraints of a circuit interface, namely, the timing and sequencing

behavior.

This chapter is composed of four sections. In the first section, I describe my taxonomy for the

types of constraints that appear in interface specifications. The next section outlines the

requirements for a general interface specification methodology. Previous work in this area is

surveyed in the third section. The concluding section presents a new approach to interface

specification based on formalized timing diagrams.

13

Circuit Interfaces as Collections of Constraints 2.1

A digital circuit interface can be viewed as a group of signal wires with constraints. I classify

the constraints into four domains: physical, electrical, logical, and timing. For example,

physical constraints include the formfactor of circuit boards, and the positioning and size

restrictions of chip packages and signal traces on a circuit board. Logic levels, current

requirements, and inputioutput capacitances are examples of the electrical concerns. In this

dissertation, I will concentrate on the logical and timing constraints. The logical constraints

specify the logic levels along the signal waveforms and the timing constraints indicate the

proper separation in time of the changes in logic level.

Interface constraints can be collected into sets that correspond to the basic communication

operations supported by the interface. An interface operation is an indivisible sequence of

events generated by two circuit blocks that constitutes communication between the two

circuits. It may be as simple as a two-phase handshake or as complex as a multi-word

data-transfer over a shared bus. Different operations may use the same or different signal

wires.

Interfaces typically support many operations and each imposes a large number of constraints

on the design of the interface circuitry- the circuitry that interacts directly with the signal

wires of the interface. These constraints can have many idiosyncratic details. Constraints in

one domain are derived from concerns on many different levels of design ranging from physical

to behavioral. For example, electrical requirements determine signal rise and fall times that

will lead to a timing constraint in the form of a setup time requirement on data to be latched.

Considerable design effort is expended in ensuring that all the constraints are satisfied and in

achieving good performance across the interface (i.e., that communication proceeds as fast as

the constraints permit).

Logical Constraints 2.1.1

Logical constraints determine the shape of a signal waveform by specifying the logic level to be

carried on a signal wire over a specified period of time. The boundaries between levels, or

events, are transitions in logic value or changes in direction, and determine the time interval

to which the logical constraints apply. Rise and fall times determine the duration of these

transitions. Two orthogonal sets of constraints can be applied to the wire during a time

interval: the logic level to be carried (a logic 0, a logic 1, or a high-impedance state) and the

direction of the wire (input, output).

Five different level constraints can constrain the logic level carried on a digital signal. These

are logic 0, logic 1, valid, high-impedance (tri-state), or don~ care. A logic 0 or 1 constraint is

14 2 -Interface Specification

self-explanatory; that level must be present on the signal wire during the particular time

interval. A valid level means that either a logic 0 or 1 is permitted but the precise value will

only be known during each specific use of the interface operation. For example, in the transfer

of data it is not known what the logic values of the data will be until the data is actually

transferred. A high-impedance or tri-state level means that neither a logic 0 nor logic 1 should

be asserted on the signal wire. This constraint is specified when a signal shares a common

wire and must defer its use of it to one of the other connected signals. The don't care level

signifies that any of the three basic levels (logic 0, logic 1, or tri-state) is acceptable. Although

this set of five constraints does not cover all possible combinations of the three basic levels, it

does include all the logical constraints used by interface designers.

Logic levels can also be constrained to be a Boolean function of other logic levels. In this case,

the logic 0 and logic 1 constraints are never used since the level is determined by the Boolean

relationship. However, whether a wire actually carries the level or is in a high-impedance

state cannot be expressed by the Boolean function. Valid, tri-state, and don't care constraints

still need to be specified for the wire.

Periodic waveforms have a fixed set of level constraints. The signal can consist solely of

alternating intervals of logic 0 and logic 1. The position of the events delineating the time

intervals is derived from the period and duty-cycle of the waveform.

Specifying that a signal wire is pre-charged or open-collector are examples of electrical, not

logical, constraints. An open-collector signal is simply one for which logic 1 and

high-impedance logical constraints are equivalent. A pre-charged signal is one that is

constrained to be in a high-impedance state during each pre-charge phase. Correct logical

constraint specification can be attained with the set of constraints described above. Therefore,

whether a signal wire is pre-charged or open-collector is not considered at the logical domain,

but rather in the domain of electrical constraints.

Timing Constraints 2.1.2

Logical constraints determine the overall shape of a signal waveform. Timing constraints

specify how events are separated in time both for events on the same signal wire and across

signal wires. A timing constraint specifies a minimum and maximum time between two

events. The events must be separated by no less than the minimum time and no more than the

maximum time. In the general case, the minimum and maximum times may be negative as

well as positive.

There are more restrictive, but more familiar, forms of timing constraints. These include

ordering, simultaneity, and synchronicity constraints. An ordering constraint is simply a

restriction that one event occurs after another event. The corresponding general timing

constraint with a zero minimum time and an infinite maximum time. A simultaneity

constraint specifies that a set of events occur at the same time, within some tolerance. This

corresponds to a set of general timing constraints between each pair of simultaneous events

Circuit Interfaces as Collections of Constraints- 2.1 15

I
I

that have a maximum time equal to the tolerance. and a minimum time that is the negative of

the maximum, making it symmetric. A synchronicity constraint corresponds to setup and hold

times for a synchronous signal. It applies to all events on a signal wire and specifies a timing

constraint between the events and the closest edge of the synchronizing signal. In this case,

one constraint applies to all events on a signal wire. Table 2.1 is a summary of all these forms

of timing constraints and their special characteristics.

Constraint Minimum Maximum Events

general +/-time +/-time one pair

ordering 0 + infinity one pair

simultaneity -infinity +tolerance many

synchronicity -setup time +hold time many pairs

Table 2.1. The four types of timing constraints and their restrictions. Each type is an

abbreviation for a collection of general timing constraints. The ordering constraint is

minimum constraint with a value of 0. The simultaneity constraint is a set of maximum

constraints between all pairs of events to which it applies. The synchronicity constraint

applies to many pairs, constraining each event on a signal to the nearest event on the

synchronous periodic signal. This classification is similar to that found in

[Granacki86b].

The last type of timing constraint defines the timing relationships of periodic waveforms and

is not a variation of the general timing constrant. A periodic waveform is composed of an

alternating sequence of logic 0 and logic 1 levels that repeat every period with the duration of

the logic 1level defined by the duty-cycle of the periodic signal. Therefore, the periodic timing

constraint is composed of two values: the period and the duty-cycle. The duty-cycle is often

expressed as a fraction of the period.

16 2 -Interface Specification

Requirements for Interface Specification 2.2

What distinguishes interface specification languages from functional specification languages

is the emphasis on constraints. However, there are other aspects of interface behavior that

cannot be represented as constraints. To be able to call an interface specification method

complete, it must be capable of describing arbitrary circuit behavior. Furthermore, a usable

description language requires many of the features common to all computer languages. These

include composing a more complex specification from simpler pieces in a hierarchical or

non-hierarchical fashion and the ability to specify conditional and looping sequences of events.

These are constructs familiar to all programmers, though there are some important

differences when these ideas are applied to interfaces. In this section, I will outline the

necessary requirements for a complete and general interface specification language. The

Waves editor described in Chapter 3 is an example of a specification methodology that meets

these requirements.

Specification of Event Sequences 2.2.1

The ability to express timing constraints distinguishes interface specification languages from

traditional hardware description languages. It must be possible to specify a general timing

constraint between two events. The prerequisites for this are the ability to specify the shape of

the signal waveforms and to uniquely identify events so that they can be connected by one of

the constraints outlined above (see Table 2.1).

A specification language must be capable of describing more than just a simple linear

sequence of events. It must have the capability of expressing conditional and looping

sequences as well. In specifying conditional sequences the differences between interface

specification and computer languages is substantial. Each conditional sequence is enabled by

a specific event. However, the enabling event may not be just the change in logic levels that

defines the event, but also that the event occurred within a specific time interval. This is

markedly different from the simple if-then-else statement. It includes time as a discriminant

as well as values. For example, it should be possible to specify that if an event occurs later

than a certain time then a different sequence of events should be followed.

Looping sequences are specified almost exactly as they would be in software computer

languages. In fact, it is necessary to also support while statements, where an event sequence

may be repeated until some terminating event occurs, as well as simple deterministic

iterations. The terminating condition for a while loop takes the same form as that for

conditional sequences. An example of the use of such a loop is in arbitrating for a bus where

bus grant lines are repeatedly polled until the bus is granted to the requestor.

Requirements for Interface Specification- 2.2
17

Co-routine Model for Combination 2.2.2

The procedure or subroutine is the most commonly used method of composing larger programs

from smaller ones. However, this is not a sufficient construct for interface specification. A

more appropriate model is that of communicating sequential processes or co-routines.

Hardware, by its very nature, has a high degree of parallelism. It must be possible to describe

communicating processes that proceed through event sequences in parallel. Synchronization

points determine when the event sequences must interlock. Events may occur in parallel

before or after the synchronization points. This is quite different from sequential procedure

calls where a sequence is simply inserted between two events in another sequence.

Expressibility ofHDLs 2.2.3

The last requirement for an interface specification language is that it have the expressibility

of a general hardware description language. Many interfaces include a description of finite

automata that control aspects of the interface or preserve state across interface operations.

Typically, this logic is identical in all implementations of the interface circuitry. One example

is the bus arbitration or request daisy-chain logic of many busses. Another example is the

state information that needs to be preserved across operations in a packet-switched bus to

match acknowledge packets with outstanding requests. It should be possible to directly

specify these combinational or sequential logic components.

To make this specification possible, three hardware description language features are required

in interface specification languages as well: Boolean expressions, latching conditions, and

delay elements. Boolean expressions require no explanation. Latching conditions are

necessary for interfaces that have state, and together with Boolean expressions, permit the

description of arbitrary finite state machines by providing a means of specifying state. Delay

elements are necessary for modeling real hardware elements and especially asynchronous

components where the delay of components is sometimes critical to the proper function of the

circuit. For example, if a signal logic level is a Boolean function of other signals then it should

be possible to specify that a change in the logic level of one of the inputs will not be seen at the

output signal for a certain period of time. For the purposes of this dissertation, these three

features are the minimum required to describe arbitrary digital circuits. Of course,

higher-level abstractions based on these primitives, as used in hardware description

languages, are extremely useful. For example, an ALU that is part of the interface (e.g., for

address computation) should be specified as such and not by the large number of logic

equations that would be required.

18 2- Interface Specification

Related Specification Work 2.3

Interface specification has attracted limited attention from the CAD community. There have

been only a handful of attempts at developing interface specification methodologies. These

can be classified into three main categories: (1) hardware description languages, (2) state

graphs and Petri nets, and (3) temporal logic. The three categories correspond to three

specification needs encountered by different communities of researchers. The languages work

arose in response to the problems of system specification and hardware synthesis. The state

graph approaches derive from work on self-timed circuit design and the specification of

communication protocols. Temporal logic specifications were attempted so that formal

verification of digital circuits would also include verification of interface constraints.

In this section, I will describe each of the approaches and how they meet some, but not all, of

the requirements for an interface specification language presented in the previous section. To

make the approaches easier to compare and evaluate, I will specify one of the operations of the

Intel Multibus, the master memory read, in each of the methods. This is an asynchronous data

transaction and is only one of the many operations supported by the Multibus interface.

However, its description raises many of the special issues associated with interface

specification. Figure 2.1 contains excerpts from the Multibus specification describing this

operation. Timing diagrams and accompanying text are used to outline the sequence of events

and describe timing constraints.

Hardware Description Languages 2.3.1

The earliest work in the specification of interface details naturally began in the hardware

description language community. This work was motivated by: (1) the complete specification

of digital systems including their interfaces, and (2) the synthesis of digital hardware with

interface constraints taken into account. A good history of the early work in interface

specification languages is given by Parker [Parker85].

Related Specification Work- 2.3
19

20

2.2.2.$ MULTIBUS COMMANDS. Ill this a«·
lloo, we will discuss abc command lines
ud bow &bey work ill conjunc:llon with the lines o·
plaiDid ill the preYious .ctiollS to accomplish a read
or a write operation.

Memory Jt.cad Commud • Mlt.DCI
110 Jt.ad Commalld • IOJt.CI
Manory Write ComiiWid • MWTC/
110 Write Command ·IOWCI

Tbe command lines, whic:h an driven by three state
driYCn on the bus master, IDdic:atc to the bus llave
the action that is bein& requested.

ltud ~raticns. Tllc two rad commands
(MRDC/ and IORCI) initiate lhe same basic type of
operation. Tbe only difference beiDa that MRDC/
in:Sicatcs that a memory address Is ftlid oo tire
MUL TIBUS address lines, and IORCI illdicatcs that
there is an v6 pon address 00 the MUL TIBUS ad·
dress lines. This address (memory or 110 port) must
tit ftlid on the bus .50ns prior to the read command
bcinJ ~tnerated. When the read command Is
aenerattd the 51ave module (memory or VO pon)
puu the data on the MUL TIBUS data lines and
returns a Transfer Acknowled&e (XACJCI), In·
dic:atilll that the data has been placed on the bus.
Whtn the bus master receives the aclcnowledae. it
atrobes iu &he data and nmov• the coUUDand
(MROCt or IORCI) from the MULTIBUS interface.
Tbe alavt aclclreu (memory or l/0 port) ia removed
!rom the bu1 a minimum of 60ns after the read
command is removed. XACK/ must be removed from
the MULTIBUS iuterface within 65nHC after the
command ia removed, to allow for the nut b..a cycle.
Fi6ure 2-8 ahow• the timi,na for tha Memory Read or
110 Read CIOIIIID&Dd.

IIAC&I

J.l.J READOPERATIONS
(110 AND MEMORY)

A lad operation nufcn data from memory or
from 110 10 the muter that Is controllinJ lhe bus.
For detailed functional dcscriptit'DS refer 10 Section
l.l. Tile liD:s ill•olved and timiD& specif~eatioos for a
lead Operation arc as foUows (ri&ure 3·3):

F'.,ure J-3. llcad AC TimiD&

Sec S«tioD .U for pidelines and oamples. Sec abo
die special illhibit operation ill Section 3.2.3. For
I)'Stem IJIOin&!ies with respect to read commands sec
Scctioll 6.$.

<!) AONfU II'TVP' TWL M •oUIO.U:CO•D,_

(i) T•IDIIOVt«IO '0.&U.YI TOanNtA- TO IUS.I.&CIJCAII&I &SSIJITIDAI
100 .. AI OAT A • 011 .UI.

~
tiM! .. OU .. ID '0" aAITU fO aaiiOYI. CO..uc

AOOIIIU MOLO 'rWL M UIIO.SICOIID -UIII

J.ACI;/&110 DATA IIVIT If lf•oYID ,.011 TIIIIIUI a. ~~&&•VII Otl' U IIIAJtOI.ICOIIDI
AnU TMI COIIIIIUO. QMO't'IC

F'.,ure 2-1. Manory or 110 Read Timin&

2 -Interface Specification

Figure 2.1. Excerpts from the Intel Multibus Specification describing the Multibus

master read operation [lntel82]. The excerpts only describe the data transaction part of

the operation. The bus arbitration part is not shown for the purpose of brevity. The

description includes two timing diagrams and some text to describe the logical and

timing constraints. Four signals are used in the operation and a i:tfth, not shown

(BHEN*) to signal a 16-bit wide data transfer. Electrical and physical constraints are

described elsewhere in the specification document. Reprinted by permission of Intel

Corporation.

Initially, HDL support for interfaces took the form of simple declarative specification of input

and output ports to a circuit block, outlining their special electrical and logical characteristics

(e.g., output, open collector, active low). This early work was eventually incorporated into the

ISPL hardware description language [Barbacci76]. Parallel work at IBM with AHPL, an HDL

based on APL, also added some simple timing constructs to represent delay, especially useful

for describing asynchronous systems where there is no clock to advance time [Vissers76].

However, timing constraints are not represented explicitly, but are embedded in the circuit

description. For example, if the circuit is to wait for a transition on an input signal that is to

occur within some time interval, a loop construct is used as the specification of this timing

constraint. The signal is continuously polled, for a maximum number of iterations derived

from the timing constraint, to determine if the transition had occurred. The situation is worse

with timing constraints on output signals. The transition is set to occur at a convenient time

to meet the constraint but there is no explicit representation of the timing constraint.

Therefore, the description includes only one of the many possible correct behaviors for the

interface.

The i:trst real example of an interface specification language is SLIDE [Parker81]. SLIDE was

originally developed as a programming language that could accurately simulate system

interconnect. Since system interconnect (i.e., system busses and backplanes) is primarily a

circuit interface, SLIDE directly addresses many of the issues of interface specification.

There are three interesting innovations in SLIDE. The i:trst is the model of interfaces as a

collection of communicating sequential processes. Synchronized co-routines are an accurate

model of the highly parallel and asynchronous hardware that makes up a computer system

and they make it straightforward to implement simulators for system interconnect

[Altman80]. The second is the ability to use signal and wait constructs, similar to those in

concurrent programming languages. This allows an explicit representation of timing

constraints rather than the polling loop construct discussed above. And lastly, SLIDE

emphasizes signal transitions rather than logic levels so that asynchronous systems can be

more easily modeled.

Figure 2.2 is a SLIDE description of the Multibus master read operation of Figure 1.1. Here

we can see all three of the major features of SLIDE. The interface operation is represented as a

separate process that can be started by a call from another part of the description or by a

WHEN clause. A WHEN clause specifies a set of conditions that, when met, initiate the

Related Specification Work- 2.3
21

process. The wait construct is represented in SLIDE by the DELAY UNTIL statement that

specifies that the process should remain in its current state until a condition is met. SLIDE

also allows for a timeout period on the wait. And lastly, as can be seen in the description, there

is equal support for transitions and levels on signal wires.

PROCESS masterread;

BEGIN

END;

mrdc ~ 1; bhen ~ 0; adr ~ Address;

bhen.en ~ 1; adr.en ~ 1; cmd.en ~ 1 NEXT

DELAY 50 NEXT

mrdc ~ \ NEXT

DELAY UNTIL xack EQL \ NEXT

Data ~ dat NEXT

mrdc ~I NEXT

DELAY 50 NEXT

bhen.en ~ 0; adr.en ~ 0; cmd.en ~ 0 NEXT

Figure 2.2. SLIDE description ofthe Multibus master read operation. The signals can be

assigned levels (1 or 0) and transitions (falling {\) or rising(/)). The Address and Data

variables represent bit vectors. Signals with the .en suffix are used as tri-state control for

the signal with the same name. The NEXT keyword enforced a sequence on the

statements. Statements between two NEXTs can occur in any order.

There are some major difficulties with SLIDE, however. Its emphasis on asynchronous

behavior makes it cumbersome to express synchronous behavior. To do so requires that all

transitions be described relative to a fine-grain clock, typically with a 1 or 2 nanosecond

period. This is necessary for modelling both asynchronous and synchronous behavior in the

same program. It is also difficult to express constraints across statements that do not follow

each other in the program sequence.

Another approach to interface specification comes from problems in high-level synthesis

[Thomas83]. These synthesis systems enable designers to synthesize circuits directly from

high-level specifications to actual hardware. However, designers are then faced with the

problems of system integration (i.e., the satisfaction of interface constraints so two circuit

blocks can communicate).

ISPS is a familiar HDL used in high-level synthesis [Barbacci81]. The Behavioral Synthesis

with Interfaces (BSI) extensions to ISPS add constructs for describing circuit interfaces

[Nestor86]. Three features of BSIIISPS are particularly interesting. The first extends the

input and output port semantics to include specifications such as active low and tristatability.

The second makes explicit use of ordering statements to enforce the proper order on interface

event sequences. Since the synthesis process attempts to optimize circuit size by rescheduling

22 2 -Interface Specification

the order of events in the description, it is necessary to specify explicit ordering constraints to

override this rearrangement. This ordering is expressed using the TNEXT() construct as

shown in Figure 2.3. Finally, general timing constraints can also be expressed. Rather than

using a delay statement as in SLIDE, BSIJISPS uses labels on statements of the description to

identify interesting events. Timing constraints are then declared to exist between these labels

and are not restricted to be in the program sequence, as in SLIDE (see Figure 2.2).

MasterRead(Address<23:0>)<1S:O> :=begin

OUTPUTP(bhen.l, TS.ENABLE) {L:mrOe};

OUTPUTP(adr.l, TS.ENABLE) {L:mr1e};

end

OUTPUTP(mrdc.l, TS.ENABLE) NEXT

OUTPUTP(bhen.l, 1) {L:mrO};

OUTPUTP(adr.l, Address) {L: mr1} NEXT

OUTPUTP(mrdc.l, 1) {L:mr2} NEXT TNEXT() NEXT

WAIT(INPUTP(xack.l)) NEXT

MasterRead = INPUTP(data. I) NEXT

OUTPUTP(mrdc.l, 0) {L:mr3} NEXT

OUTPUTP(adr.l, TS.DISABLE) {L:mr4} NEXT

OUTPUTP{ bhen.l, TS.DISABLE) {L:mrS} NEXT

OUTPUTP{ mrdc.l, TS.DISABLE) {L:mr6} NEXT

mrTenb: time{ mrOe, mrO) GEQ Ons;

mrTena: time(mr1e, mr1) GEQ Ons;

mrTbs: time(mrO, mr2) GEQ SOns;

mrTas: time(mr1, mr2) GEQ SOns;

mrTbh: time(mr3, mr4) GEQ SOns;

mrTah: time(mr3, mrS) GEQ SOns;

mrTdis: time(mr3, mr6) GEQ SOns;

mrTcmd: time(mr2, mr3) GEQ 1 OOns;

Figure 2.3. BSIJISPS description of the Multibus master read operation (adapted from

[Nestor87a]). The procedure takes the address as an argument and returns the data

value. Signals with the .l suffix represent lines that are active low, that is, when a logic 1

is assigned to these lines it actually appears a low electrical level. The output statements

take two arguments: the name of the signal and the value. The value can be a logic 0,

logic 1, or a string to signify that the signal should be driven or high-impedance. The

labels used by the timing constraint declarations are within curly brackets ({ }).

Two timing constraints of the interface cannot be expressed with BSIJISPS. These are the

65ns maximum constraints that exist between the event that deasserts the command line

(labeled mr3 in Figure 2.3) and the deassertion of the acknowledge and data lines by the slave

Related Specification Work- 2.3
23

device. To express this constraint it is necessary to use aWAIT statement for the acknowledge

input and then add a constraint between that statement and the statement that deasserts the

command. However, this is not done in ISPS because the semantics are such that the

synthesis procedures would then synthesize circuitry to check that the acknowledge signal

was deasserted. This is not the true intent of the specification. It is simply to state that the

circuitry can be designed to assume that the signal will be deasserted within 65ns, not that

circuitry should be added to actually check for this event. The similar constraint on the data

lines cannot even be expressed because the data lines carry unknown logic values and it is not

possible to use aWAIT statement because standard digital logic cannot determine when a wire

is in a high-impedance state. This is due to the fact that BSIIISPS was not designed to be an

interface specification language. Rather it is intended to be a means of introducing interface

constraints into a functional description.

Furthermore, timing constraints are interspersed with functional details. Although the

sequence of events on the interface signals and their timing constraints can be separated into

their own procedure, as in Figure 2.3, this is not a viable alternative because it leads to

inefficiencies in the synthesized circuitry. Unless the procedure is expanded in-line and

merged with the procedures that call it, the synthesized interface circuitry will execute

sequentially and not in parallel with the circuit internals. The in-line expansion is very

difficult because it is not obvious how events should be ordered across procedures. Therefore,

timing constraints are typically embedded in the functional description much in the same way

as the precursors to SLIDE described above. The separation of interface constraints from

circuit function is one of the principal advantages derived from SLIDE's co-routine model that

is absent in ISPS.

The Timing Design System (TDS) uses a similar approach to constraint specification as

BSI/ISPS [Kara86]. The events are simply a list of changes between two logic levels on a

signal wire. Constraints are expressed as a minimum and maximum tme between two events.

Unfortunately, TDS can only express constraints within a fixed sequence of events and lacks

the higher-level constructs ofHDLs such as conditionals and loops.

A problem common to all these languages is the difficulty of describing event sequences within

a linear program. The one-dimensional nature of a programming language is not a good

match for the two dimensions of timing constraints. The implicit time axis used to represent

the linear sequence of events is the only dimension visually present. The second dimension is

used to represent constraints between different signals and is not available in the linear

program. This makes the interrelationships between signals difficult to discern. This has led

to attempts to make machine-readable interface specification more like the methods employed

by designers. One approach has been to describe the interface as well as the circuit in natural

language text (see Figure 2.4) [Granacki86a].

Although English is easily readable, it is still difficult to quickly grasp the relationships

between the pieces of information described. The use of English only partially alleviates the

requirement of learning a new language for specification. It is simply a new and restricted

style of a more familiar natural language rather than a familiar computer language.

24 2- Interface Specification

A 16 bit word of data is read over the dat lines.

A 24 bit address is transferred over the adr Jines.

All command lines are active low.

There is an asynchronous four-cycle handshake that takes place across the

mrdc and xack lines.

The adr and bhen signals have a SOns setup time before mrdc is asserted.

The adr and bhen signals have a SOns hold time after mrdc is deasserted.

The mrdc line must be asserted for a minimum of 100ns.

The data andxack lines will be deasserted within 6Sns ofmrdc being

de asserted.

To read the data the master asserts the mrdc line and then waits for xack to be

asserted by the slave.

The data is available while the xack line is asserted.

Figure 2.4. PHRAN-SPAN natuallanguage specification of the Multibus master read

operation. To make the natural language system practical the English is restricted to

some simple templates of declarative sentences.

My approach is to use the complementary part of interface documentation for formal

specification, the timing diagrams. Timing diagrams are ubiquitous in interface specification

documents and are familiar to all digital circuit designers. Interestingly, the constraints in

TDS are used to derive a timing diagram for the user. In section 2.4, and in more detail in

Chapter 3, I will demonstrate how timing diagrams can be used for interface specification, but

first, I will describe the other two classes of approaches to interface specification.

State Graphs and Petri Nets 2.3.2

Petri net theory forms the basis of the state graph approaches to interface specification

[Petri62]. Petri nets are an abstract graph model for describing event sequencing and have

been adapted to describe many sequential processes including interface protocols. Petri nets

are bi-partite graphs composed of two types of nodes called places and transitions

[Agerwala79]. Places symbolize computation and transitions are synchronization points for

different paths through the graphs. Arcs connect places to transitions and transitions to

places. They can fan-out or fan-in arbitrarily.

Petri nets have been adapted for the behavioral description of digital circuits by the self-timed

circuits community. These researchers study circuits that function correctly regardless of the

relative speed of their components. They are asynchronous circuits designed with only the

proper sequence of events determining correct operation and not their separation in time.

Petri nets are a perfect match for self-timed circuits because they emphasize both event

sequencing and parallelism [Misunas73]. One consequence is that the graphs describing these

circuits completely ignore timing constraints.

Related Specification Work- 2.3
25

Petri Nets have been used to represent circuit interfaces in the form ofl-nets [Molnar85]. In

I-nets, transitions are either input or output events. Places correspond to computations that

occur between these events. Figure 2.5 is anI-net representation of the Multibus master read

operation.

Address bhen\

xack/

Figure 2.5. I-net Specification of the Multibus master read operation. The place nodes

are represented by circles and the transition nodes by horizontal bars. The I and \

notation is used to signify rising or falling transitions on the corresponding signal. The

starred(*) nodes represent the initial position of the Petri net tokens.

Timed Petri nets are an extension to the basic Petri net model that assigns a period of time to

the nodes in the graph [Goos80]. The two-dimensional nature of the Petri net does make it

possible to express delay in more than just the program sequence. These extensions can be

applied to I-nets as well. Each place then automically includes the analogue of a BSIIISPS

minimum timing constraint. But it is not possible to express a maximum timing constraint

using this model as was the case in the pre-SLIDE HDL approaches.

Another state-graph approach is based on Milner's calculus of communicating systems (CCS)

[Milner80]. The objective of this work is to develop an algebra of operations on circuit

interface specifications [Koomen85]. These operations can then be used to derive the

specification of a composite block given the two interface specifications for the component

blocks. Similarly, the reverse should be possible. Given the desired behavior of a block and

one component, it should be possible to derive the interface behavior of the other component.

26 2 -Interface Specification

In this algebra, circuits are only viewed from the outside, through their interface. There is no

attempt to model circuit function. Only event sequencing is considered, with timing

relationships completely ignored. Interface descriptions are basically state diagrams with

arcs corresponding to transitions on interface signals. Figure 2.6 shows a CCS description that

is equivalent to that of Figure 2.5.

Read = (adr.out!Address I bhen.out!O) : enable.out! 1: Cmd

Cmd = mrdc.out!O: dat.in?Data: Ack

Ack = xack.in?O: mrdc.out! 1: End

End = enable.out!O: xack.in?1: Read

Figure 2.6. CCS Specification of the Multibus master read operation. State transitions

are based on transitions on input signals (.in?) or output signals (.out!). Each transition

leads to a new state. In this figure four state are named (Read, Cmd, Ack, and End) and

four are not. The "I" symbol is used for parallel combination of sub-graphs, in this case it

describes two transitions that can occur in parallel.

Temporal Logic 2.3.3

Temporal logic has also been applied to the high-level specification of digital circuits

[Bochmann82]. The thrust of the work is towards the verification of hardware

implementations given a high-level behavioral specification written in temporal logic [Dill85].

Temporal logic has proven especially useful in the area of asynchronous and self-timed

circuits, where there do not exist as well understood design methodologies as in synchronous

design. Asynchronous design is more complex because different sequences of events can occur

depending on the relative delays of circuit components. These delays may not be known and

vary with time and instance ofthe circuit. Even just a few components involve a large number

of cases that must be considered to insure the circuit operates properly. Continuous signal

levels must be taken into account rather than the discrete levels sampled once every clock

period as in synchronous design.

A temporal logic specification of a circuit consists of a set of states and statements that hold for

some subset of the states. The logic is built upon logic levels rather than transitions and a

state exists for every possible combination of signal logic levels. Directed arcs connect a state

to other states that can be reached by a single signal transition. Four different statements, or

formulas, assert properties of the state graph. If P and Q are Boolean functions of signals then

the four operators of temporal logic are as follows: P (no operators), P is true in the current

state; G(P), Pis true in all following states; F(P), Pis true in some future state or states; P U Q,

P is true until Q becomes true. From this set of primitive statements ordered asynchronous

sequences of events can be specified (see Figure 2. 7).

Related Specification Work- 2.3
27

Temporal logic is a good match for asynchronous, and especially self-timed, logic where only

the sequence of events is critical. Since these types of designs are highly error-prone, formal

verification methods are essential. Verification is the systematic transformation of one

representation of a circuit into another by provably correct steps. The circuit is deemed

verified if the two representaions can be shown to be identical. Typically the two

representations are the circuit logic and the temporal logic specification of its functionality.

G((not mrdc*) implies ((not mrdc*) U (not xack*)))

G((not xack*) implies {{not xack*) U mrdc*))

G{xack* implies {xack* U {not mrdc*)))

G(mrdc* implies (mrdc* U xack*))

G{ (and {not mrdc*) (not xack*)) implies F{ {and mrdc* xack*)))

G{ (not mrdc*) implies Address)

G{ {and {not mrdc*) (not xack*)) implies Data)

Figure 2. 7. A temporal logic specification of the Multibus master read operation. Each

statement applies to those states where the antecedent of the implication is true. The

first four statements express ordering constraints for the four-cycle handshake between

mrdc* and xack*. The first states that whenever mrdc* is false it stays false until xack*

becomes false, or in other words, mrdc* can only rise again after xack* has gone low. The

second states that whenever xack* is false it stays false until mrdc* becomes true. The

third and fourth statements are similar. The fifth states that if a sequence begins it must

eventually end and the last two express the fact that the Address is valid whenever

mrdc* is low and that data is valid whenever xack* is low.

As was the case with the state graph approaches, timing constraints have traditionally been

ignored in temporal logic. To address this deficeincy, interval temporal logic (ITL) has been

proposed [Moszkowski85]. In ITL, time consists of small indivisible intervals and the formulas

of the logic express properties that hold over sets of these intervals. This permits the

expression of constraints such as ''A is low in 10 to 20 subintervals·~ However, this method has

only been applied to small sequential circuits such as flip-flops where interface signals only

change level once or twice during the entire operation. Again, the fundamental problem with

temporal logic is that it stresses levels and not events. Events cannot be easily identified and

therefore it is difficult to differentiate between two similar transitions on the same signal.

Timing could be expressed by drastically increasing the number of states and statements to

include all possible combinations of signal levels at every point in time rather than just the

possible combinations of logic levels. This has been attempted with the use of regular

expressions for describing the sequence of levels on the signals [Kimura87]. A deterministic

fmite automata, constructed from the regular-expression, is used to verify that a sequence of

output vectors from a simulation meets the specification.

28 2 -Interface Specification

In this scheme, as in ITL, the least common factor of all the timing constraints is used to set

the basic time step for the simulation vectors. A gross mismatch in granularity of the

constraints (e.g., 13ns and lOOns) means that a very small factor is used. This leads to a

drastic increase in the number of states in the automata. For our example, shown in Figure

2.8, the least common factor is 5ns. An example of how difficult and cumbersome this process

can become is evident in the description of interfaces with many synchronous signals. There

are many orderings of level changes on the many signal wires that are still valid with respect

to the setup and hold times, but the description must include all combinations. The size of the

regular expression is exponential in the number of signals and must be repeated at every clock

period during which the signals may change.

* 10,* * * * 10 *,3
BHEN* 0 0 0 0 0

ADR[O; 19]* v v v v v
MRDC* 1 0 0 0 1 - + - - +
DAT[0:1S]* v v v v v
XACK* 0 0 0 0 0

*,3 *,3
0

*,3
0

*,3

v v
- + - - + - - + - + ' - + 1 - + 1 - +

v v v v v v v v
0 0 0 1 0 0 0 0

10 *,3 *,3 *,3 *

0 0 0 0 0 0 0 0 0

v v v v v v v v v
+ 1 - + 1 - + 1 + 1 1 - +

v v v v v v
0 0 0 0 0 0 0 0

Figure 2.8. An incomplete regular expression specification of the Multibus master read

operation. Each term should correspond to the occurence of one event. The 0, 1, V, and

symbols indicate the logic level on the signal wire and correspond to logic zero, logic one,

either one or zero, and tri-state, respectively. The notation "10,*" means that the

specified logic level must exist for 10 or more 5ns time intervals. The first example of this

in the expression corresponds to the address setup time. The combinatorial explosion in

the number of terms is evident when we attempt to describe three interacting

constraints, the 50ns address hold time and the 65ns maximum time for the DAT* and

XACK* lines to be deasserted. The lOOns minimum time for the assertion of MRDC* is

not included, it would further increase the size of the specification by expanding the third

through r:Uth terms above.

Related Specification Work- 2.3
29

A more serious deficiency is that it becomes practically impossible to express constraints that

span many events due to the combinatorial explosion in the number of terms of the regular

expression. This is the case in the example of Figure 2.8 for the lOOns minimum constraint for

the time that MRDC* is low. Every combination of valid levels would have to be listed for the

20 5ns time periods involved. A similar situation exists for the 65ns max constraints on DAT*

and XACK*. These constraints are only partially represented in the figure, their full

specification would include an order of magnitude more terms (and states in the deterministic

fmite automata that would verify the sequence).

30 2- Interface Specification

Formalized Timing Diagrams- A New Approach 2.4

Each of the approaches to interface specification described in the previous section has three

major deficiencies. The first is that each employs a methodology for describing interfaces that

is not familiar to the designers that will most use the method. Second, none of them treat

synchronous and asynchronous signals uniformly with one stressed to the detriment of the

other. Third, in the HDL approaches, timing constraints must be expressed within the

confines of a one-dimensional program, making them difficult to express and debug. In the

state-graphs and temporal logic, general timing constraints are for the most part ignored or so

cumbersome to describe to be practically impossible to express.

A specification methodology is required that addresses these three deficiencies as well as the

requirements outlined in section 2.2. I propose the use of formalized timing diagrams as a

specification method for circuit interfaces. The nature of timing diagrams directly addresses

all the deficiencies of the previous approaches and with some straight-forward extensions can

meet all the requirements for an interface specification language.

Timing diagrams are commonly used to describe interfaces both for the purposes of

communication among designers and for documentation. They are familiar and natural to

designers and have a concise and graphical user interface, unlike the language and temporal

logic approaches.

Constraints are collected in timing diagrams with each diagram or group of diagrams

correspondings to an interface operation. Events are defined by the shape of the signal

waveforms. The logical constraints are drawn directly on the diagrams and determine the

precise shape of the waveforms. Timing constraints can be specified between any two events.

Constraints common to all the events on a waveform (e.g., synchonicity constraints) can be

associated with the signal itself along with other signal properties, such as the direction of the

signal (e.g., input, output, or bidirectional).

Timing diagrams present synchronous and asynchronous signals uniformly. Rather than

concentrating on one or the other as in the languages described in the previous section, timing

diagrams emphasize the position of events on signal wires and the timing constraints that

exist between the events. Events can be positioned at any point that satisfies the timing

constraints. The way constraints are drawn in the diagrams makes it trivial to determine

which of the signals and events they interrelate. The two dimensions of the diagram, the time

axis and the signal axis, precisely position each event in time and provide an overall picture of

the sequence. This is markedly different from the language approaches where it is not obvious

how the constraints relate the signals because the signal axis is completely missing. The time

axis is the only one present in the program listing, and it is not even a true time axis that

shows the relative duration of the intervals between events.

Formalized Timing Diagrams-A New Approach- 2.4 31

The contrast between timing diagrams and the other methods is quite obvious when the
Multibus example is considered. Figure 2.9 shows the corresponding timing diagram and it
should be compared to the descriptions of the previous section and especially Figure 2.1. The
timing diagram form is almost identical to the figures from the Multibus specification
document. The task of entering the specification should be much easier when one can simply
redraw the timing diagrams rather than translating them into a completely different form.

Timing diagrams are in many ways very similar to the event graph approaches described
above. Each event is a node in an ordered graph of events corresponding to the interface
operation. However, timing diagrams support the expression of general timing constraints
between events, unlike the graph approaches. Furthermore, the complexity of the timing
diagram correlates well with the complexity of the interface, unlike the temporal logic
approaches.

ADI=i[0:19]"' 11>

MRDC'" 11>

DAT[0:1~]'" >II

XACK* >II

'N Address

..........•.... ~·-~.:9!
Figure 2.9. Formalized timing diagram specification of the Multibus Master Read
operation. This figure should be contrasted with the other specifications in Figures 2.2
through 2.8 and especially with the original specification of Figure 2.1.

In summary, timing diagrams are a much more natural and concise way of describing the
interface than a programming language. This is because they focus on the interface's
constraints rather than the logic circuitry that operates on its signals, leaving uncommitted
the logic that will realize the interface. Their two dimensional nature and uniform treatment
of synchronous and asynchronous signals makes it easy to express arbitrary timing
constraints. Extensions to support conditional and looping events and diagram composability
are described in the next chapter along with the integration ofHDL constructs with the timing
diagrams so that arbitrary logic can be specified. These extensions make timing diagrams an
ideal circuit interface specification methodology that meets all requirements discussed above.

32 2 -Interface Specification

Waves 3

Waves is an interactive editor for the design, specification, and documentation of circuit

interfaces. It supports editing operations on signal waveforms collected in timing diagrams.
Timing constraints between events on the waveforms can be directly expressed through the

editing facilities. The constraints are automatically checked and violations highlighted
whenever editing operations cause a change in the position of events. Waves diagrams can be
used as input to a variety of CAD tools that reason about interface design, synthesis, and
testing. Waves is implemented in LOOPS, an object-oriented programming extension to the

Interlisp-D programming environment, on Xerox 1109 workstations.

This chapter is composed of five sections. The first section is an introduction to formalized
timing diagrams as a means of interface specification and the implementation medium chosen
for Waves. Basic Waves diagrams are described in the second section while the third explains
how the basic diagram is extended to meet the requirements for an interface specification
language outlined in the previous chapter. The chapter concludes with a description of some of

the CAD tools that are enabled by the interface specification methodology supported by Waves.
Appendix A discusses issues in the design of the user interface of Waves and the philosophy
behind some of the implementation decisions.

33

A Formalized Timing Diagram Editor 3.1

Timing diagrams are used by designers to describe the interface behavior of circuit blocks.

However, they are an informal method, with many variations in notation and appearance

among different communities of designers. This is evident immediately when one leafs

through documentation from different semiconductor manufacturers. There have been some

attempts to standardize the basic notation for events, causality, and timing constraints

[Rony80]. However, these attempts have not addressed the more general problems that need

to be solved for general interface specification.

Among these is the problem that timing diagrams do not provide the same power of expression

as programming languages. They are good for describing sequences of events but conditional

and looping sequences are difficult to express and the constructs used to describe them in

manufacturer specification sheets are rarely as general as in programming languages. Also,

many interfaces include some logic that is required in every implementation (e.g., the specific

logic equations in some bus arbitration schemes). It is usually difficult and cumbersome to

describe these Boolean relationships and finite automata in a timing diagram. There have

been many ad hoc solutions to these problems, usually involving an attached schematic

diagram or textual description, but there has been little proposed standardization of what

timing diagrams should look like or extensions to the notation so that arbitrarily complex

behavior- that is, any finite automata and its timing constraints- can be described.

In this chapter I describe a set of formalizations and extensions of the timing diagram notation

that will make this descriptive method meet the requirements for an interface specification

language discussed in the previous chapter. These are embodied in an interactive editor,

called Waves, that supports interface specification through timing diagrams. What makes

Waves interesting is how the many of the features of HDLs are incorporated within the

framework of the timing diagram. This is accomplished with three formalizations, all of which

are necessary for the description of real circuit interfaces. They are the capabilities for

expressing arbitrary logic and delay constructs, conditional and looping sequences of events,

and the composition of diagrams into larger composite structures.

Waves is implemented in Interlisp-D, a single address space, multi-process, Lisp programming

environment running on Xerox 1109 Lisp workstations [Xerox86]. The general procedural

interface to window and mouse operations available in Interlisp-D provided the primary

impetus for using it to implement Waves. Waves relies heavily on LOOPS, a set of

multi-paradigm programming extensions to Interlisp-D [Bobrow83, Stefik86]. LOOPS adds

object-oriented, data-driven, and rule-based programming paradigms to the procedural

paradigm already available in Inter lisp-D. A more complete discussion of the programming

environment and the implementation philosophy behind Waves is contained in Appendix A.

The appendix also includes a more detailed description of Waves' user interface.

34 3-Waves

The Basic Waves Diagram 3.2

A timing diagram in Waves is composed of a group of five Interlisp windows (see Figure 3.1).

These display a collection of signal wires and waveforms that represent the logic levels on the

wires over time. The windows are tied together using the Interlisp attached window

mechanism. They are moved, resized, and closed as a single entity. The windows have

different functions in the editing of diagram information and have the following names: title

window (the top bar), feedback window (on the left below the title window), time line window

(on the right below the title window), signal name window (on the bottom left), and trace

window (on the bottom right). Through interactions with these windows, the user can use

Waves to represent basic event sequencing, timing constraints, and signal wire properties.

G Clock ->II

0 Phase ~

nnn Sync $

0
I

100
I

200
I

300
I

400
I

500
I

~ it-(1@CIOCK)

eOO
I

Async 1 ->II

Async 2 ->II

: .. ··: ·;~~~l .•.•.. ~~-m
········ ,,_..........-- ·t .. _/./

Figure 3.1. An example of a Waves timing diagram. It is divided into five windows for:

the title bar, feedback information, time line, signal names, and signal traces. The

shaded waveforms are inputs and the darker ones are outputs. Events correspond to

changes in the logic level of the waveform. Events shown as shaded intervals (don't care)

are on synchronous signals and the shading is consistent with the setup and hold time

specifications. The signal labelled Sync is synchronous to the falling edge of Phase and

the dilation of the events is determined from its SOns setup time and Ons hold time. The

logic levels on the signal Asyncl show the representation of the tri-state and valid logical

constraints. Also shown in the diagram are three ordering constraints and two timing

constraints. Timing constraints can be expressed as a limited expression consisting of

two terms: a number of cycles of a periodic signal and an absolute time amount. A

simultaneity constraint is also present between the first events on the two asynchronous

signals. Simultaneity constraints are not drawn unless they are violated (see Figure

A.3). Not all the specification information is directly visible in the diagram, but all of it

is accesible through menus obtained from mouse events on diagram objects.

The Basic Waves Diagram- 3.2
35

Waves also includes an extensive repertoire of editing operations. Their implementation and
user interfaces are described in Appendix A. In this section, I will descibe each of the five
windows of the basic diagram in detail.

The Signal Name Window 3.2.1

Besides the name of the signal, the signal name window is used to enter all information that
applies to an entire signal wire. Examples of this type of information are the directionality of
the wire and whether or not the signal is periodic. The direction of a signal is displayed with
the small icons to the right of the signal name: input (~), output (!Jio), or bidirectional ($).
The periodic nature of the signal is displayed on the left side of the name with another set of
icons for a clock ((S:'), a phase of a clock(()), or a synchronous signal (Mil). An asynchronous
signal does not have an icon. There is no reference clock to the diagram and there can be any
number of signals of each type.

All signal information is attached to the signal names and is entered and modified with the
help of a set of pop-menus. The appropriate menu pop-ups depending on the signal or signals
selected. For example, for clock signals there is a menu item for changing the period and
dutycycle while for non-periodic signals there is one for specifying the setup and hold times if
the signal is made synchronous to a clock. Other information, that is not constantly visible, is
also attached to the signal names. This includes rise and fall times for edges on the signal and
the electrical characteristics of the wire (e.g., open-collector, TTL levels).

<9 Clock ~

0 Phase IJ;o

nnn Sync -+

Aeync 1 ~

Aeync 2 ~

Figure 3.2. An example of a signal name window. It contains five signal names. The
icons on the right are used to indicate the directionality of the signal wire (input, output,
or bidirectional). The icons on the right are used to indicate the type of signal (periodic
clock, periodic phase of a clock, synchronous, or asynchronous).

As there may be more signals in the diagram than names that can fit, the signal name window
is scrollable in the vertical direction. A pop-up scroll bar is visible when the mouse exits the
window through its left edge. The user can scroll the window in either direction one signal at a

36
3-Waves

time or thumb to a specific point. The trace window is scrolled to follow the signal name

window.

The Trace Window 3.2.2

The window on the bottom right is the trace window. It displays the waveform traces

corresponding to each of the signal names in the signal name window. It also displays the

various timing constraints that exist between events on the waveforms. Only two types of

constraints are displayed: general timing constraints and ordering constraints. Simultaneity

constraints are only displayed when they are violated and appear as a line segment connecting

two events (see section A.4).

Only the traces of non-periodic signals can be edited. The shape of periodic waveforms is

determined by the period, duty-cycle, and phase-offset specified as signal properties in the

signal name window. For synchronous and asynchronous signals, events are specified by the

appropriate mouse click on the waveform. Events may be inserted anywhere along an

asynchronous waveform, while on synchronous waveforms, events can only be placed near the

edge of the clock to which the signal is synchronized. Signals can be specified as being

synchronous, in the signal name window, and can be permitted to change logic level at both or

either of the falling and rising edges of the periodic waveform. Synchronous events are drawn

as don't care levels stretching from one hold time after a clock edge to one setup time before the

next clock edge. Asynchronous events appear as a single edge between two different logic

levels.

. ; . . :............ :

1+---("1 ,25@Ciock + 7'5min~

Figure 3.3. An example of a signal trace window. It displays five signal traces or

waveforms, three ordering constraints, and two timing constraints. Logic levels can be

labeled so that data transferred across the interface can be named.

Logic levels to either side of the event can be changed with the use of a pop-up menu. Levels

can also be labeled so that data transferred across the interface can be named. Events may be

moved along the waveform and are limited only by the position of adjoining events.

The Basic Waves Diagram- 3.2
37

Synchronous events are snapped to the nearest clock edge. Special care must be given

synchronous events because of these enforced constraints. When a clock period is changed,

any synchronous signals must have their events realigned. To perform this realignment in a

semantically correct way, rather than just repositioning the events to the closest new edge

(where some may need to overlap), Waves also maintains the same number of cycles between

events. This method maintains the relative position of the events relative to the cycles of the

clock which is the most common way to think about synchronous signals.

Movements of events and changes in logic levels are always checked for consistency with rise

and fall times by the editor and not performed if an inconsistency would arise. Rise and fall

times can be specified for the entire signal in the signal name window or specifically for an

individual event in the trace window.

Timing constraints can be added directly to the diagram once two events are identified. A

pop-up menu is available on each event that permits the user to select one of the three types of

event pair constraints: the timing constraint, the ordering arc, or the simultaneity constraint

(see Table 2.1). The editor then prompts the user to select the pairing event. This applies to

events on periodic waveforms as well.

The timing constraint is added to the diagram after the user specifies time parameters. A

general timing constraint has minimum and maximum time parameters. These are expressed

as a two-term expression ofthe form cycles@clock+time. The first term is a number ofperiods

of a periodic waveform in the diagram (the@ symbol is read as ''cycles of' and the second is an

absolute time amount. A similar specification exists for the simultaneity constraint while the

ordering constraint does not require time value parameters.

The Time Line Window 3.2.3

0~~-------1-?_0 ______ 2_?_0 ______ 3_?_0 ______ 4_0_
1

0 _______ 5_?_0 ____ ~6~0 1

Figure 3.4. An example of a time line window. The horizontal bar represents a single

diagram segment. Segments will be discussed further in section 3.3.2. Horizontal

scrolling of the diagram is described in section A.5.

The time line window is directly above the trace window and displays a time line used to

precisely position and align events on the traces. The units of the time line do not correspond

to any specific time measure and can be arbitrarily scaled. For the purposes of this

dissertation and the example diagram, one time unit will correspond to one nanosecond. The

events are positioned by the user in one of the many possible configurations that meet the

38 3-Waves

timing constraints. The horizontal bar above the time line is used to identify diagram

segments and will be discussed further in section 3.3.2.

The Feedback Window 3.2.4

The window directly above the signal name window is the feedback window. Its function is to

provide information to the user regarding the currently selected view options. These inform

the user whether all timing constraints are being displayed (ordering arcs (OA), simultaneity

relation (SR), and timing constraints (TC)) as well as other options that are described in

section A.5.

The feedback window also displays the current position in time of the cursor as it moves over

the trace window. The last position where a mouse button was clicked is displayed as is the

difference between that position and the current position of the cursor. This information can

be used for precise positioning of events along the time line and measuring distances on the

traces.

llle'N Options:
OA SR TC

Last: 28
Cl'nt: 280 dt: 252

Figure 3.5. An example of a feedback window. It displays the active diagram view

options, the position in time of the last mouse click, the mouse's current position, and the

time difference between the two points.

The Title Window 3.2.5

'•N AVES> Interface X --Operation Y --Example Diaqrarn

Figure 3.6. An example of a title window for operation Y of interface X. The title of the

diagram is Example Diagram.

The last window of a Waves diagram is the title window. It is a horizontal black bar across the

top of the diagram that displays the name and classification of the diagram. A diagram is

identified by a three part name: the circuit interface(s) to which it applies, the operation(s) for

which it specifies all or part of the event sequence, and the name which uniquely identifies it

when more than one diagram is used for the specification of an interface operation. The title

The Basic Waves Diagram- 3.2 39

window is also used by the user to obtain the menus of operations that apply to the entire

diagram.

The Waves Icon 3.2.6

The Waves icon appears on the screen of the Interlisp-D environment. It acts as a portal to all

the timing diagrams currently loaded into the virtual memory and also provides access to

diagrams stored in files. When the user clicks a mouse button over the icon a menu pops-up

giving the user access to all currently loaded timing diagrams.

Multi b u 3 0 e 31 g n Frame ~=~=T"l"l"=-rl·:·:
2-Pha3e ~
4-Pha3e

SPUR PCC
SPUR SBC

Nu8u3
Motorola 68000

Static RAM

Figure 3. 7. The Waves icon and diagram menu. By clicking a mouse button over the icon

the user can access all currently loaded Waves diagrams via a three-level menu organized

by interface, operation, and title. Diagrams may appear more than once in the menu if

they are used to describe more than one operation or interface. In the case above, the

Multibus interface and its Master Read operation are selected. There are two diagrams

for this operation with the titles Arbitration and Data Transaction (see Figure 1.1).

The menu organizes the timing diagrams into three levels. The top level shows the names of

the interfaces for which diagrams have been defined. Two other items are also present: one for

opening a new blank diagram and another for loading a diagram that had previously been

saved in a file. The second level of the menu shows the names of the operations that have been

defined for each interface. The last level simply shows the title of the diagram. These three

fields are obtained from the title window of the diagram. A diagram may appear more than

once in the menu if it used in the specification of more than one operation (e.g., an arbitration

sequence used for both read and write operations) or more than one interface, in the case of

similar but not identical interfaces.

40 3-Waves

Extensions for Interface Specification 3.3

The editing capabilities described above permit the specification of simple event sequences
and the timing constraints that apply to them. However, this is not all that is required of an
interface specification language. In section 2.2, I outlined the minimum requirements for such
a specification method. In this section, I will describe how timing diagram notation can be
extended to meet these requirements. The basic Waves diagrams described in the previous
section are inadequate in three areas: representation of arbitrary logic circuitry, specification
of conditional and looping event sequences, and combination of event sequences in multiple

diagrams.

Representation of Arbitrary Logic Circuitry 3.3.1

Representation of arbitrary automata requires the ability to specify state information and
Boolean functions of signals. This is accomplished in Waves with a fourth signal direction

type, the internal signal (D), and another basic signal type, the computed signal (~). An
internal signal is one that is unobservable at the interface and provides internal interface

state. A computed signal is one whose waveform is constrained to be a Boolean function of

other waveforms.

Internal versions of all the basic signal types can be defined. A periodic internal signal is a
periodic waveform that is internal to the interface and is only used to generate events on
output signals. It is not itself an output. Internal synchronous and asynchronous signals can
carry arbitrary waveforms and their events can be connected to other events through the usual

constraints.

Computed signals are specified by a Boolean function that determines the logic level carried
on the wire. However, the Boolean expressions used are more general than standard Boolean
algebra. They also include delay and latching expressions, and all three types can be
combined into an arbitrarily complex expression. Once the capability for specifying these
general Boolean conditions is present, it can also be used to specify when a sequence of events
should be started and which of a set of alternative sequences should be followed. This is done
by attaching Boolean conditions to specific events. These are used to indicate that the event

occurs only if the condition is true.

A delay expression states that a signal is a delayed version of another. It is also used in
expressing constraints between events represented implicitly in the diagram and those
generated by a computed signal. The delay is specified with the same minimum and
maximum time parameters as the general timing constraints.

Extensions for Interface Specification- 3.3 41

To express constraints from an event in the diagram to a computed signal, the user specifies

the function of the computed signal to include a delay expression. For example, (DELAY

(AND ABC) 3@CLK) means that the value of this computed signal is the logical AND of

signals A, B, and C delayed by three cycles of CLK. For the reverse, a constraint from an event

on a computed signal to an event in the diagram, the user attaches a condition containing a

delay expression to the diagram event. The Boolean condition includes the computed signal as

a literal. If the condition (DELAY (NOT D) 100) were attached to an event it would be

interpreted as a constraint that the event is not to occur unless the signal D was low lOOns

earlier. The delay statement can be nested arbitrarily as if it were a Boolean operator, as in

(AND (DELAY A 10 50) B), where the signal is the AND of signals A and B, but the effect of

signal A on the output is delayed a minimum of lOns and not more than 50ns.

Latching expressions imply one bit of memory and specify that the level of the computed signal

is the output of a latch whose description includes two Boolean functions; one for the input and

one for the control signal. A synchronous latching signal can be specified by including the

periodic signal in the Boolean expression for the control signal of the latch. (LATCH (OR X

(NOT Y)) (NOT (AND ENABLE CLOCK))) specifies that a Boolean function of X andY is to be

latched when the AND of ENABLE and CLOCK is not true. The latching expression can only

be used for level-triggered latches, however, it is possible to write a more complex expression

for an edge-triggered latch with these primitives. In fact, the LATCH expression is itself a

shorthand form for a collection of Boolean expressions that describe each of the gates in a

level-sensitive latch.

Computed signals are edited differently than non-computed signals. The only levels to which

the user can constrain the waveform of a computed signals are valid, tri-state, and don't care.

The exact Boolean value on the wire will be determined by the Boolean expressions.

Therefore, computed signals can not be periodic signals unless their Boolean function yields

such a result. Asynchronous computed signals carry a signal that is a simple Boolean function

of other wires, while a synchronous computed signal (~) only specifies that the signal will be

tri-stated and asserted synchronously. Its value will only be synchronous if the function

describing the signal is synchronous. This means that if a latching condition is used then the

same periodic signal is used to control the latch and if a Boolean expression is used it includes

only signals that are synchronous to the same periodic waveform. The user must be careful

that the value of the expression is not used when one of the inputs to the expression may be in

a high-impedance state. Waves simply records the Boolean relationship and does not check for

correctness.

Interface state and automata are sometimes required to preserve information across interface

operations. One example of this is the priority code used to arbitrate for a system bus. An

interface may need to sample the value at power-up and then preserve it for later use during

data transfer operations. Another example is the addresses of pending operations on a

packet-switched bus that need to be saved (i.e., latched) until the acknowledgment packet is

received.

42 3-Waves

Waves supports the specification of interface state through computed internal signals with
latching expressions. An arbitrary finite state machine can be specified using internal signals
with latching expressions to represent the state bits and computed signals for the
combinational logic that determines the outputs and next state. The latch specifies the state
memory bit and the Boolean function on the input specifies the next state logic. Moore and
Mealy finite state machines can both be described by making the output computed signals
functions of just the internal state bits or of both the state bits and inputs. A synchronous or
asynchronous machine can be specified by making the corresponding internal signals
synchronous or asynchronous.

G CLK* 111 ·. . ·. :

lf-----+-(2@CLK*;;;;·M)-' ----+---.f
"""RQST* .0. ,..,-.,...,..,-r---

~ AR8[0:3]* .0.

11M START* .0.

11M ACK* 111

ID[O: 3]* 111

(2@CLK*miM
.......

l~~xc;<·;.~ ·:·:·_.,., ..
..

••• u •• t:;::::j' •• ::

"'·B

Figure 3.8. An example of a diagram with a computed signal taken from the TI NuB us
[Texaslnstruments85]. The ARB[0:3]* lines are computed by the following functions
taken directly from the specification document:

ARBO* = (NAND (NOT IDO*) (OR (NOT ID3*) ARB3*) (OR (NOT ID2*) ARB2*)
(OR (NOT IDl *) ARBl *)),

ARBl * = (NAND (NOT IDl *)(OR (NOT ID3*) ARB3*)
(OR (NOT ID2*) ARB2*)),

ARB2* = (NAND (NOT ID2*) (OR (NOT ID3*) ARB3*)),
and ARB3* = ID3*.

The ARB[0:3]* lines driven or tri-stated synchronous to a clock edge. However, the logic
levels on the wires are not (as can be seen in the equations above). The value on the lines
can constantly change while they are being driven. This is used to implement the
priority bus arbitration scheme of the Nubus. The labels A and Bare explained in the
next section.

Ideally, it should be possible to describe arbitrary hardware as part of the interface
specifications. A flexible specification language must allow for the integration of existing
pieces of hardware into the description. The delay expressions outlined above also help with
this requirement. It can be used not only to describe computed signals and the timing
constraints on them, but also for specifying a delay corresponding to a propagation delay in
already implemented circuitry. This is done by using a delay expression where the minimum

Extensions for Interface Specification- 3.3 43

and maximum times are identical (this is specified by a single value as in (DELAY A 10)).

This is equivalent to the delay construct common to many HDLs including some of those

described in section 2. 3.

This collection of escapes to a procedural description language, Boolean, latching, and delay

expressions, coupled with internal signals for specifying interface state bits, allow arbitrary

circuitry associated with an interface to be attached to a timing diagram. While the

mechanisms described are the primitives required for representation of arbitrary circuitry and

their constraints, it ·is obvious that higher level templates could be included to make

specification easier for the designer. For example, it should be possible to specify an

edge-triggered latch for a signal or that three internal state bits represent a counter without

having to include the precise Boolean gates that implement these circuits.

(OR
(NOR

(At-JD
(NAND

(EQUAL (LATCH
(NOT (DELAY

)
]

Figure 3.9. The menu used to enter Boolean expressions. It pops-up whenever a Boolean

expression is entered or edited. The ten items ((OR, (NOR, (AND, (NAND, (EQUAL,

(NOT, (LATCH, (DELAY,), and]) permit the user to specify all supported expressions.

Signal names do not need to be typed in by the user, they can be obtained by clicking a

mouse button over the name in the signal name window while holding down the shift

key.

Conditional and Looping Event Sequences 3.3.2

The second extension is required to describe conditional and looping sequences of events. This

is accomplished by breaking a diagram into segments and then applying a regular-expression

syntax to the alphabet of diagram segments. A diagram segment is an interval in time of the

complete diagram. The diagrams in Figure 3.10 have three diagram segments. The visual

representation of this can be seen in the time line window where the single bar of Figure 3.4 is

now broken into three segments. Each segment is labeled and the center segment also has a

Kleene star operator attached to its name. This is the mechanism for describing a looping

sequence of events, in this case a while loop. Waves also supports a specific number of

iterations besides the indeterminate number specified by the Kleene star. Conditional

sequences are represented by different segments occupying the same interval in time. In

Figure 3.10, the two diagrams represent two views on the same diagram and differ only in the

last segment. These specify two possible sequences of events for ending the operation.

44 3-Waves

1/\•'.e..'-/ES> Nu 6u::. -- r-:'1,3ster Block Rea.d Data Tr·an::.action
Vtew Opttons:

0#. SR TC
Last: 98
c~nt~ 76 Cit~ • 20

~~ CLK/ ;I)

Mil AD[O: 31]/ ;()+

Mil TMO/ ;()+

Mil TM1/ ;()+

Mil START/ ~

Mil ACK/ ""

0
I

100 200
I I

Data(*)

300 400
I I

1<2> Transfer OK

500 600
I I

.................. ,_ ,_ '· _.. ,_ _.--···--··t-··-,_

.- ·. -'<l.- '----~1 ((C~i(; J \1'@ Cl K/ H loi-

700
I

___ _f_A_d_d r_<:....1 ~:i:;: ;..·.~·:;:·: : :9.:9.~~:::::~: .. : .. :· : .. :::::·:::·· __ -._·_:_:_:_: __ ·_o ___ ·:_~_-_.:_~_a._:_:_:_:_:_: ___ :_.~··::::· :: .. -: .. :::·:·

:.: __ / __
· ··

... ,,/-......................... .
E8 EB ,

1.'•//'-.VES> Nu 6u3 ·· r-.-1aster Block Rea.d Data Transaction
Vtew Opttons:

0#. SR TC
Ls.st: 98
Cmt~ 76 Cit~ • 20

~~ CLK/ ""
Mil AD[0:31]/ ;()+

Mil TMO/ ;()+

Mil TM1/ ;()+

Mil START/ ~

Mil ACK/ ;I)

0
I

Data(*) I (2) ~ rro ~

100 200 300 400 500 600
I I I I I I

····+··-, .··

-'<l 1<-(1(~ CLi(~) (1@CLK/H 10-

700
I

----(~A~d~d rC:~·--·--·-- b·sta··· --.,. -······o e.ta·····.,.
(1@CLf"./)-'<l........ ~

__ r-_...::.._

I ./-

-_/
E8 E8

Figure 3.10. Two views of a Waves diagram that demonstrate the use of a

regular-expression syntax on diagram segments to represent conditional and looping

sequences of events. The center segment of the diagrams has a Kleene-star attached to

its name signifying that the sequence of events it contains can occur an arbitrary number

oftimes. The last segment is different in the two views of the diagram and the notation

<2 > indicates that this is in fact one of two possible alternative segments for its time

period. The regular-expression for the diagram would be written as [Address Data* (

TransferOK /Error)]. The Data segment is enabled by a condition that ACKI is high on

the first TMO/ event in the segment. TransferOK and Error are also enabled by

conditions on their first TMO/ events. These are (AND (NOT ACK!) (NOT TMl!)) and

(AND (NOT ACKI) TMl!)) respectively. The conditions can be viewed and edited

through the use of a pop-up menu obtained by clicking on the events.

Timing constraints can be expressed across segment boundaries. In looping segments,

constraints from earlier segments apply to the first iteration of the segment, constraints to

later segments apply to the last iteration. If constraints need to be expressed between

iterations of the segment itself than two copies of the segment (with identical events and

Extensions for Interface Specification- 3.3 45

internal constraints) must be placed in the diagram and identically named. Constraints

between events in these two copies apply form one iteration of the segment to the next.

Nested diagram segments are represented by adding a level to the bars of the time line

window, as in Figure 3.11. Only the lowest level bars can be used to split and join segments or

add levels. The higher level bars are needed only to express looping sequences that include

more than one diagram segment. However, they do provide a hierarchical organization for the

segments that the user may find useful for purposes of clarity.

0
I

A

100
I

200
I

300
I

0

400
I

C(+)

500
I

G(3)

eoo
I

700
I

Figure 3.11. The time line window of a Waves diagram with nested segments. In this

case the regular-expression is [(A I B) C*]. It can also be written as [(A I B) ((DIE IF

) G3)*]. The term (DIE IF) G3 is equivalent to C. Only one of each group of

alternatives can be viewed at a time. In this case, the view is of the string ADG3 (or

Ac*). Segments B, E, and Fare not visible in this view of the diagram. For looping

segments, the user can specify a minimum and maximum number of iterations. For

example: (*,5) would indicate that the segment may occur 0 to 5 times, (3,7) indicates 3 to

7 iterations, (2,"') means that the segment will occur at least 2 times.

To complete this extension we only need a way to specify how one of two or more alternative

sequences is selected. This is done by segment enablers. A segment enabler is an event that

causes a choice to be made among alternative sequences. The sequence that is selected will

occur and those that do not will be bypassed. A segment enabler can be either an event (e.g., a

signal going low) or a time of occurence of an event (e.g., a signal going low within two cycles).

Either the event or the timing constraint can be marked by the user as enabling the segment.

The event may also have a general Boolean condition attached to it and this must also be met

for the sequence to be selected. For example, in Figure 3.8, the events labelled A and B are

segment enablers. The event labeled A enables the Wait for Others segment and has a

condition associated with it that specifies that it will occur if the ARB[0:3]"' lines are not equal

to the ID[0:3]"' lines two cycles after they have been asserted. The event labeled B has the

complementary Boolean condition and enables the Take Bus segment.

Of course, the enabling conditions must be mutually exclusive or two, possibly conflicting,

sequences of events could be enabled. However, they do not need to completely cover all

possibilities. Waves checks only for conflicts between segment enablers, not for full coverage of

all possibilities. Many interface specifications do not specify a sequence of events for every

possible condition at a decision point but only for a subset. The other conditions may be known

to never occur and therefore the lack offull coverage does not necessarily constitute an error in

the specification.

46 3-Waves

Combination of Diagrams 3.3.3

The last extension is needed to support the composability of timing diagrams. It is generally

recognized as being useful and more efficient to specify smaller entities and then combine

them together into larger ones. The same should be possible for the sequences of events

described in timing diagrams. Here the model of concurrent sequential processes is especially

appropriate. The user can specify synchronization points between diagrams much in the same

way as signal and wait constructs are used in concurrent programming languages. There are

four types of labeled points: start, end, merge, and order points. Each point has a textual label

to distinguish it from other points of the same type.

The start and end points are used to label the first and last events of an interface operation.

There can be only one first event for each operation, possibly with a Boolean condition

attached, and many last events, the union of which signifies the end of the operation. Multiple

last events must be unordered by timing constraints.

Merge points are used to tie together events across different diagrams and to combine two or

more event sequences. The sequences can be tied together at more than one point making it

possible to call a diagram as a co-routine from another with the merge points acting as

synchronization points. Merge points translate to simultaneity constraints across diagrams.

Merge points can also be used to express timing constraints between events in different

diagrams. If two events are on the same signal and are ofthe same type (e.g., logic 0 to logic 1,

tristate to logic 0, etc.), then making them identically labeled merge points causes them to be

combined into a single event. In this manner, any timing constraints attached to the events

carry over across the two diagrams. In some cases, a constraint may need to be expressed

across diagrams without the event actually being part of the sequence in both diagrams. This

type of constraint is only meant to apply when the diagrams are both part of the specification

of an operation but may also be used separately for other operations. The constraints should

only apply when the two are combined. To express these constraints, an event can still be

drawn in a diagram and then marked as inactive. This specifies that it is not part of the

sequence represented by that diagram but rather acts only as a place holder for some

inter-diagram timing constraints.

Ordering of events across diagrams can be expressed using ordering points. The difference

between ordering and merge points is that an ordering constraint, rather than a simultaneity

constraint, is specified between the two events. The event labeled with an ordering point is

permitted to occur only after the event with the identically labeled merge point in the other

diagram has occurred. Although this could be done using only merge points and ordering

constraints, this separate mechanism is required when diagrams from two different interface

specifications need to be combined and some dependencies enforced. It should not be necessary

to include details of another interface in an interface specification.

Extensions for Interface Specification- 3.3
47

48

\3 BCLK*

IVVI BREQ*

nnn CBRQ*

"""BUSY* ~

"""BPRN* <0

~ BPRO* ~

.• ADR[0:1'3J!"•• ~

VltW pt1011s:
OA SP'I TC

1..ut: re
Crnt' 78 dt' 0

BHEN*

ADR[0:19]*

MRDC*.

DAT[0:15]* <0

XACK*

=:\ . . (• (''f0CCK>.,..;./ 1'\ ~
........ \~ ···7 ~c;:? ~/ .. l~E ... ·.-·.-··~·······

· · ·· ···· ·· "\':<: f"rJ (12000max' - ·~l··
............ \;; ,j l .

......................... ,................ t························ ··.·.··.·.·

................
..••••••• t<. . . (1oom '-x:rt .. ,._

....),.
A

,__ ___________________ .,--
'NO Adorus'

(1 OOmin'

Figure 3,12. Waves diagrams that demonstrate the use of merge points. The two

diagrams represent the specification of the Multibus master read operation including bus

arbitration. The first diagram specifies the arbitration sequence and the second the

details of the data transaction. The letter annotations in the diagrams show where there

are labelled points. In the top diagram, there is a start point (S, the first event of

BREQ*), and end point (E, the last event on BUSY*), and three merge points that

correspond to events in the other diagram. Two sets of merge points are used to merge

the assertion of BUSY* and the first event on the command line MRDC* (B) and the

deassertion of BUSY* and the last event on MRDC* (C). The other set (A) is used for

expressing a lOOns maximum constraint between the time that BUSY* is deasserted to

the time the address bus is tri-stated. The signal ADR[0:19]* is shaded to indicate that it

is only used as a place holder for the inter-diagram constraint and is not actually part of

the diagram. Such a signal (or individual event) is called inactive. The second event on

that signal is merged with the similar event on the lower diagram (the first event is

ignored). The view option to permit the display of the shading of the inactive signal is

turned on (see the feedback window annotation AID.

3-Waves

Applications of Waves 3.4

Waves supports a new and complete interface specification method that serves as a framework

for a new class of CAD tools. It can also be a front-end to the other interface specification

approaches discussed in section 2.3. The events of the Waves diagram can be translated into

state graphs or Petri nets quite easily and used to annotate hardware description language

code. Each event corresponds to a different state, node in the graphs, or statement in the

language. Some researchers using temporal logic and language specifications have suggested

the use of timing diagrams as a user interface for logic circuit designers rather than the

complex logic notation or one-dimensional language [Granacki86b, Kimura87, Nestor87b].

Waves is a specification approach that emphasizes ease of use by applications designers and

not just experts in the specification method. This is not the case for the other approaches,

especially the formal logic methods.

But Waves has other uses besides an interface specification method. Applications range from

design and documentation to interface circuit synthesis. Waves can serve not only as the

front-end to these applications, but it can also generate the different data structures required

by the programs. In this section, I will give a short description of how Waves specifications can

be used by four different types of interface CAD tools. These are only a subset of the tools

made possible by virtue of having an interface specification methodology.

Interface Documentation 3.4.1

Waves diagrams can serve as an index to interface documentation and to generate hardcopy

specifications in a natural language. The capability of all diagram objects to hold arbitrary

text makes this possible. The text is accessible directly through the diagram interface by

using the pop-up menus of diagram objects. A text editor window an be used to enter, modify,

format, and view the text. Rather than dealing with the index of a specification document, the

user can graphically reach the signal, event, or constraint of interest within its proper context.

Documentation guidelines, not unlike those used in many design efforts today, insure that the

text has uniform style and formatting. If interface designers can fully annotate a set of

diagrams corresponding to all the operations of an interface, then a tool can be developed to

automatically generate a hardcopy document describing the interface. Figures and tables can

be derived from the Waves diagrams and used to illucidate the text description. The text can

contain references to objects in the figures and further improve the readability of the

description.

Applications of Waves- 3.4 49

Interface Design 3.4.2

Waves is also useful as an aid in the design of circuit interfaces. In the initial stages of design,
a system is partitioned into smaller pieces with the complexity of each component typically

being less than that of the system taken as a whole. Designers can proceed more rapidly in
generating software and hardware implementations for each of the components. However,

this divide and conquer approach creates a whole collection of interfaces that did not
previously exist and are artifacts of the partitioning process. For this reason, designers must

carefully consider the effects of system partitioning. A wrong decision could result in
inefficient communication between system components and poor performance.

Waves aids designers in making these decisions by providing a spreadsheet-like way of

evaluating changes to the interface. A typical scenario may be as follows. Each of the
interfaces in the partitioning is specified using Waves. The timing diagrams describe the

sequences of events and timing constraints for each interface operation. The constraint
checking capabilities of Waves are then used to evaluate the effect of changes in the interface.

For example, the designer may want to view the effect of changing the clocking scheme for a
synchronous component. The clock period can be changed, duty-cycles varied, and signals
made synchronous to different clock phases. The effects of these modifications can be seen
immediately by observing the violated constraints in the diagram. This is especially useful
when two asynchronous components have connecting interfaces. A complementary approach

was taken in the Timing Design System [Kara86]. TDS generates a timing diagram, with
specific positions assigned to each event so that all the timing constraints are satisfied. This is
a useful aid in the synthesis of interface circuitry.

As changes occur during the system partitioning process, the interface specifications can also
be used to maintain compatibility among the different components. The misunderstandings or
omissions in a verbal or informal description are a common source of design errors in
multi-person design teams. Frequently different designers are simultaneously modifying

different parts of the design and negotiating the interface details based on the needs of the
components being connected. With frequent changes, especially early in the design cycle, it is
difficult to keep the many interface details consistent without the help of CAD tools [Katz83].
Waves diagrams can be used to check that the interfaces are still compatible after each round

of design changes.

To do this, Waves diagrams for each operation in each of the two connecting interfaces must be
matched. This involves two steps. First, the events in one component's interface must be
matched one-to-one with events from the other component's interface. Second, it must be
determined if there is a positioning of the events in time that satisfies the constraints of both

interfaces.

The matching of events is a restricted graph isomorphism problem. The nodes (or events) are
grouped into disjoint sets, with each set corresponding to a different signal and its members

partially ordered in time. Interesting problems arise with don't care and synchronous events.

so 3-Waves

A don't care level on one signal trace must match with any other level. This means that the

event that leads to the don't care level may or may not have a corresponding event on the other

interface. Synchronous events have a similar problem. If two adjacent synchronous events on

the same signal do not have a minimum timing constraint between them, then it may be the

case that they overlap (see Figure 3.13). The logic levels of computed signals are evaluated

before they are matched. The pairing of events is a classical search problem where tentative

decisions about whether two events match are made and then possibly retracted at a later time

to try a different matching. Timing constraints can be used to help prune the search to those

events that actually occur within a more limited time range. This requires a programming

paradigm that supports backtracking (e.g, Prolog). If any logic levels do not match or events

are left unpaired then the interfaces are not compatible. The timing diagram user interface

permits the program to call the designer's attention to the few events where the matching

process failed.

A successful matching of the events does not imply compatible interfaces, however. The

timing constraints must also be checked. It must be possible to position the events in time so

that the constraints of both interface specifications are satisfied. This requires a

general-purpose constraint solver that can process the graph and assign time intervals to each

of the events consistent with the constraints. If none of the intervals are empty then the

constraints can be met and the interfaces deemed compatible.

Figure 3.13. The overlap of synchronous events. The middle signal trace has two pulses

that are a minimum of one cycle wide. A possible matching signal is shown below it. The

two cycles are pushed together overlapping two events and eliminating them from the

trace. The compatibility checker must be able to recognize this as a match.

Waves could also be a front-end to interface analysis and critiquing tools similar to those that

have been developed for electrical aspects of design [Kelly84]. These tools could call the

designer's attention to interface constructs known to be inefficient (e.g., four-cycle

handshaking in a synchronous system) and suggest restructuring of the event sequences and

constraints.

Simulation and Testing 3.4.3

Once the interfaces have been designed, Waves specifications can be used to generate

commands for the simulation of the internal circuitry of each component. The diagram

Applications of Waves- 3.4
51

includes all the information required, from the events in the diagram, to generate input signal

values for the simulator. The output values, also obtained from the diagram, can be verified as

the simulation proceeds. Since time is not a consideration during event driven simulation, the

timing constraints need not be considered.

The difficulty in generating the simulator commands comes from the mixing of signal events

and periodic events. This is straightforward for synchronous signals whose events are aligned

with clock edges but not for asynchronous events or when mixing events synchronous to

different clocks. One approach is to simply use the positioning of events in the timing diagram

to generate command-time pairs. These can then be sorted in time and used to run the

simulation. Difficulties with this approach arise when two or more diagrams with

independent time lines are combined. The diagrams may need to be stretched or shrunk in

time to properly reflect the interactions of events across diagrams.

Rather than dealing with these issues, the constraint solver outlined above can be used to

derive permissible time intervals for all the events in the combined diagrams. The events are

each assigned a time of occurance. The effects of each assignment on the time intervals of

future events are propagated and used to make a consistent assignment for the next events.

Once this is accomplished the events can again be sorted by time and translated to simulator

commands.

The first approach is much simpler to implement. Also, it is easier for the user to understand

the results of the simulation because the positioning of the events is reflected exactly in the

timing diagram. Responsibility for combining events across diagrams consistently can be left

mostly to the user. If the diagrams are already stretched or shrunk to the right size, then the

tool need only apply time offsets.

Timing diagrams are widely accepted as an excellent interface to circuit testers. In fact, a

waveform editor, similar in many ways to Waves, is used as the user interface to Digital

Equipment's Knowledge-Based Test Assistant (KBTA) [Arnold85]. KBTA uses a similar

algorithm to that ofTDS to generate event positions that test the circuit for proper operation

within and outside the tolerance specified by the timing constraints.

The issues in generating test vectors are quite different than for simulation commands

[DenBeste86]. Testing is not an event driven process but occurs in real-time. Input vectors

can be generated from the timing diagrams in the same way as simulation input commands,

but output validation is a different matter. As output events may occur at any time within

some interval, it is not possible to generate a fixed set of output vectors with which to compare.

Rather, the output values must be collected by the appropriate strobes and translated back

into waveforms with events identified. These can then be matched with the output waveforms

of the timing diagram using the same restricted graph isomorphism algorithm outlined in the

previous section. Timing constraints can also be checked in the same way.

This is very different from the way testers work today. Designers specify a full set of input and

output vectors for the tester. But these can, by definition, only include one possile set of

correct outputs. Many more acceptable output vectors are possible as long as they meet the

52 3-Waves

timing constraints. The new method outlined above checks that the circuit under test meets

the specification, not just one set of possible outputs.

The difference between the specification and one set of vectors is also an issue for the input

vectors. It should be possible to use the diagram to generate a whole collection of tests that

validate the circuit's behavior relative to the timing constraints. For this to be possible, the

input vectors must be generated using the constraint solver and a series of assignments of

times to events that exercise the circuit to the limits of all the timing constraints. For

example, sets of input vectors could be generated to test the setup and hold time requirements

of a synchronous interface. Some testers and simulators are being developed that have these

capabilities [lkos86].

Synthesis of Interface Circuitry 3.4.4

Interface specifications are also useful in the automatic synthesis of circuit blocks. For

example, the BSI!ISPS extensions to ISPS enable the synthesis of synchronous circuit blocks

while taking interface constraints into account [Nestor86]. Waves diagrams can be a front-end

for constraint specification in these programs. An ISPS description can be used to generate a

timing diagram via a user-controlled simulation. If the events generated by the simulation

are automatically labelled with the labels from the language description, then the designer

can enter the constraints directly unto the diagram (see section 2.3.1). The connections back to

the ISPS code exist through the common labels.

If two interfaces are not compatible, then we can think about developing tools that give the

designer hints about how to correct the problem. Ideally, a tool could be developed to modify

the two components so that their interfaces are compatible. In the shorter-term, we can look to

tools that make the components compatible by generating glue logic to be placed between their

two interfaces rather than modifying the internal circuitry.

The synthesis of glue logic is one of the most neglected areas of automatic circuit synthesis.

The reason is the difficulty in specifying the interfaces and the complexity of dealing

simultaneously with both synchronous and asynchronous signals. Waves enables the

development of interface circuitry synthesis tools by addressing these two specification issues.

A tool for the synthesis of interface transducers, the glue logic that connects two interfaces

together, is the subject of the next two chapters.

Applications of Waves- 3.4
53

<This page intentionally left blank.>

54 3-Waves

PART II

55

<This page intentionally left blank. >

56

Transducer Synthesis 4

The glue logic that connects two interfaces is an interface transducer. Each interface is

described using a collection of Waves diagrams. Transducers are predominantly control logic,

may include both synchronous and asynchronous components, and must respect many timing

relationships on the interfaces to be connected. Traditional synthesis methods are inadequate

in the face of these features. I have developed a new synthesis approach based on event graphs

derived from formalized timing diagram specifications of the circuit interfaces. It can

synthesize high-perfomance transducers comparable in size to designs composed by

experienced human designers.

This chapter is composed of three sections. In the first section I define what an interface

transducer is and list the features that distinguish this class of circuits. The second section

surveys the methods employed in the automatic synthesis of digital circuits and explains why

they are inadequate for interface transducers. In the third section, I introduce a new synthesis

method, called Suture, that addresses these deficiencies.

57

Interface Transducers 4.1

An interface transducer is the glue logic that connects two interfaces. It is important to note
that this is more general than connecting two circuit blocks. There may not be a
corresponding circuit implementation to one or both of the interfaces. For example, in
connecting a chip to a system bus, the chip is a logic circuit block but there is no circuitry
corresponding to the system bus side of the transducer.

Figure 4.1 illustrates the concept of the transducer. Two different abstract interfaces are
linked together so they can communicate. The communication primitives are events on signal
wires that cross the interfaces. Chapters 2 and 3 describe how interface behavior can be
specified, including both event sequencing and timing constraints between events, through
the use of formalized timing diagrams .

. ··············

::::::::::::::::::::::: ~:: ~ ~: ~: ~::::: ~: ~:: :~::::::::::::::::::::::::::::
Custom Chip Interface Transducer System Bus

Figure 4.1. An interface transducer connects two interfaces. In this case, the transducer
connects a custom chip to a system bus.

Interface Operations 4.1.1

If we view communication across interfaces as the exchange of signal events, then a
transducer's function is to map a sequence of events on one interface into the semantically
equivalent sequence on the other interface. The sequences are organized into groups
corresponding to interface operations. Each operation corresponds to a set of Waves diagrams
that defines its sequence of events. Semantically equivalent operations are recognized by
having the same name (e.g., data read) in both interface descriptions (see section 3.2.6).

58 4- Transducer Synthesis

Throughout this dissertation interface operations are assumed to be atomic entities. This

means that a sequence of events corresponding to an interface operation is indivisible (i.e., if it

begins, then it will also end before it can begin again). The specification method must permit

the description of conditional behavior on the interface to cover all possible ways in which the

operation can come to completion (as in Waves, see section 3.3.2).

This model of circuit interfaces leads to a two-part specification of transducers. The first

consists of the names of the two interfaces that the transducer connects. The second is a list of

operations, common to both interfaces, that the transducer must support. Supporting an

operation means that, for the operation, events on one side of the transducer are mapped to the

other side. The mapping must respect all timing constraints associated with the event

sequences.

For two interfaces to be connected, they must have some operations that are semantically

equivalent. This not only means that the corresponding sequences of events have the same

meaning but also that if any data is transferred across one interface, it is also transferred

across the other. With Waves, this means that if labeled data signals exist in a diagram for an

operation on one interface then they must be identically labeled for the same operation on the

other interface.

Specification of Transducer Behavior 4.1.2

The behavioral specification of an interface transducer consists of all the exchanges of events

between the transducer and each interface for every operation it supports. Events must be

sensed and generated within specified time intervals corresponding to the timing information

in the event sequence specifications. The event sequences are a high-level specification of the

interface circuitry. All that is specified is the input/output behavior of the logic; there are no

assumptions in the specification of the structural details of the transducer implementation. It

is possible to derive many implementations from the same specification.

However, the event sequences are not a complete behavioral specification for the transducer.

The sequences on the two sides are completely independent. There are no ordering or timing

constraints that can be used to relate them. To specify a complete transducer these event

sequences must be interconnected.

Interconnection is accomplished through both explicit and implicit ordering relationships.

Explicit ordering can be specified by declaring in the transducer specification that one event on

one side must occur before another on the other side. This is done using techniques similar to

those used to order events on the same side and was discussed in section 3.3.3. Implicit

ordering can be obtained automatically by observing the data dependencies that exist across

the two interfaces. Data that is input on one side of the transducer must be available before it

is used as an output on the other side. This fact is used to generate ordering constraints that

connect events on the two interfaces.

Interface Transducers- 4.1
59

Another level of behavioral specification for transducers entails the description of the

interactions among event sequences of different operations. For example, some interfaces may

allow different operations to be in progress concurrently. This aspect is not considered in this

dissertation. It will be assumed that the event sequences of different operations do not overlap

in time as far as one transducer is concerned.

This assumption is not as serious a limitation as it might seem. Most system busses conform to

this model by being a shared resource that can only be used by one system component at a

time. This eliminates the possibility of overlapping operations. Even packet-switched busses

can be expressed this way by representing the request and acknowledge parts of a data read or

write as separate operations. The interface is specified to include the internal state (i.e.,

addresses) needed to match a request with the correct acknowledge packet. The circuits

commonly implemented as custom chips also conform easily to this model. Difficulties arise

when finer-grain interfaces between small circuit blocks (e.g., individual gates and switching

networks) are considered. These are predominantly combinational logic blocks that

continuously operate on their inputs as opposed to responding to and generating sequences of

events with well-defined start and end points. Only the larger-grain interfaces encountered in

subsystem integration are within the scope of this dissertation.

Automatic Synthesis of Transducers 4.1.3

Interface transducers are an important class of circuits that are required whenever a

component is connected to another component, inserted into a system, or moved to a different

system. The proper design of transducers is critical to overall system performance. Since they

form the communication paths of the system, bandwidth must be kept as high as possible.

Ideally, it should be limited only by the internal circuitry of the components being connected.

Therefore, a transducer must not only be logically correct, but must perform its functions as

quickly as the interface constraints will permit.

To achieve maximum bandwidth, communication may be performed asynchronously. In a

large system, this is almost certainly the case, as clock skew among system components makes

it virtually impossible to keep the entire system synchronous to a single high-speed clock.

Asynchronous designs are also used in smaller systems so that signal events can proceed as

quickly as possible rather than being constrained to occur near edges of the system clock.

These considerations contribute to the different nature of transducer circuits when compared

to the internal circuits of typical logic blocks. Transducer designs have four distinguishing

features: (1) they tend to be control intensive with only modest data paths, (2) they typically

include both asynchronous and synchronous circuits, (3) circuitry may be included to delay

some signals so that interface constraints are met, and (4) performance is usually a more

important consideration in their design than circuit size and complexity.

60 4- Transducer Synthesis

These features make the design of transducer circuitry difficult for the applications designer

(i.e., the expert in the internal logic of a circuit block, not the interface to which it is to be

connected). Furthermore, the conflict between performance and satisfaction of the interface

constraints makes the design highly error-prone. This is due to the many details that must be

considered simultaneously and which may have global implications. For example, responding

to an asynchronous signal by synchronizing it and feeding it through a finite state machine

may be much slower than a small amount of asynchronous circuitry that operates on the

signal directly.

An automatic synthesis method that generates transducer logic from high-level specification

of the interfaces can help eliminate these types of design errors. Also, automated design of

transducers can substantially reduce the time needed to integrate custom chips into a

computer system and thereby make the entire design-test-evaluate-redesign cycle more

efficient.

In the next section, I will discuss why previous high-level synthesis methods are inadequate

for interface transducers. Only the logic circuit and timing design of transducers will be

considered. While for a truly complete synthesizer, one must also consider issues at the

electrical, board design, and system partitioning levels. These issues are tangential to much of

the discussion of this and the next chapter, and are beyond the scope of this dissertation. The

last section of the chapter will present a new synthesis approach that can be used to automate

the design of general interface transducers. Chapter 5 will describe the details of an

application of this synthesis approach for an interesting sub-class of transducers, namely,

those with non-overlapping atomic operations.

Interface Transducers- 4. 1
61

Related Synthesis Work 4.2

There are many ways of describing digital circuits. They can be classified into three main

categories or domains: behavioral, structural, and physical. Within each domain descriptive

methods are distinguished by the level of abstraction they emphasize. The Gajski-Kuhn

Y-chart can be used to map descriptions along these two dimensions [Gajski83]. The three

vectors of the Y-chart correspond to the three domains and the relative position of a

description along its axis corresponds to the level of detail in the description (see Figure 4.2).

BEHAVIORAL STRUCTURAL

i/o relations

algorithms CPUs, mems

register transfers data paths, FSMs

Boolean eqns gates, FFs

differential eqns transistors

masks

standard cells

module generators

floorplans

PHYSICAL

Figure 4.2. The Gajski-Kuhn Y-chart's three axes correspond to three different domains

for describing designs: behavioral, structural, and physical. The position of a description

on an axis corresponds to the level of abstraction. A description is more detailed the

closer it is to the center of the Y (adapted from [Walker85]). The arcs shown on this

diagram represent the two approaches to transducer synthesis described in this section.

Synthesis problems can be characterized as transformations from one description into another.

In the general case, the two descriptions may reside at different levels of abstraction on

different axes. In this chapter and the next, I will be discussing what is usually called

behavioral synthesis, the automatic transformation of an abstract behavioral description of a

circuit into a more detailed structural description.

In this section, I will describe the major features of two behavioral synthesis methods that

relate to the task of automatically synthesizing interface transducer logic. They are

62 4- Transducer Synthesis

distinguished by the levels of abstraction of the behavioral description which they use as input

and the structural description they generate as output.

The frrst class of synthesis methods begins with an algorithmic description of the circuit's

function. Traditional HDLs, such as ISPS, support this type of description (see section 2.3.1).

This approach emphasizes synchronous designs and generates a structural description

containing specifications of data-paths and finite-state-machine controllers [Thomas83].

The second class uses a more abstract behavioral specification that describes the mapping

between circuit inputs and outputs. I have placed this level above the algorithmic description

because it does not specify the details of the algorithm to be used to perform the mapping.

Obviously, this cannot be done for all circuits, but it is an abstraction level appropriate for

interface transducers. Graph-based specification methods like those of section 2.3.2 can be

used for this type of input description. The structural description generated by this class of

synthesis methods is also different. The elements are more primitive logic blocks

corresponding to registers (i.e., flip-flops) and combinational logic (i.e., logic gates). This

mapping has been used to synthesize small asynchronous designs [Chu86a, Chu86b].

The remainder of this section will describe both of these synthesis methods in detail. The

discussion will be focused through an example from the relevant literature of each approach.

These will help in the description of the algorithms and in demonstrating their deficiencies. In

section 4.3, I will present a new synthesis method that does not suffer from these limitations.

The examples will be reviewed in the context of this new approach.

Synthesis from Algorithmic Specifications 4.2.1

Synthesis methods that begin with algorithmic specifications as input have historically

focused on synchronous designs. In fact, most of the work has been in the area of processor

design. There are four basic steps in the transformation of an HDL description to the

structural domain [Thomas83]. First, the HDL specification is compiled into a control and

data-flow graph (CDFG) [Girczyc85]. The nodes of a CDFG correspond to operations, while the

arcs correspond to data values that are the inputs and outputs of the nodes. Second, the graph

is scheduled, that is, the execution of each operation is assigned to one or more time periods.

This is consistent with the limitation of this approach to synchronous systems. Third,

hardware modules are allocated to perform all the operations and establish the necessary

interconnections. Lastly, the operations and values are bound to hardware modules. This is a

many-to-one mapping as more than one operation may be executed by the same hardware

module (e.g., addition and subtraction performed by the same ALU) and more than one value

held in the same register (e.g., if they are used at different times in the schedule) or carried by

the same wire (e.g., with the use of a multiplexor to choose which to carry at a specific time).

Trade-oil's between speed and area are made during the scheduling and binding steps. If speed

is the primary consideration, then more hardware modules can be used to perform more

Related Synthesis Work- 4.2
63

operations in paralleL The algorithm executes in less time but at the cost of a larger area due

to the duplication of hardware modules. If the emphasis is on design size, then the synthesis

algorithms must be capable of finding the fastest scheduling given limited hardware

resources.

However, in practical designs, the trade-offs between area and speed are more complex. A

designer usually requires the ability to express timing constraints on the execution of an

algorithm or its constituent parts. Also, when interfacing with other system components,

interface circuits may have to meet some minimum or maximum timing constraints. Until

recently, these timing considerations were largely ignored by scheduling algorithms

[Girczyc85, Nestor86].

Timing constraints change the nature of scheduling algorithms. Rather than optimizing the

schedule over the entire set of operations, the algorithm must optimize under limitations

imposed by the timing constraints. Previously, only data dependencies, available hardware

resources, and sequencing constructs were considered in arriving at a final schedule. With the

introduction of timing constraints, the range within which an operation can be placed is

limited by timing constraints between it and other operations.

There have been several approaches to this more complex scheduling problem [Girczyc85,

Parker86, Paulin87]. However, all of these have concentrated on maximum timing

constraints. This is the most common type encountered in processor and data-path intensive

designs where a constraint on the execution time of each instruction is the primary concern.

In interface circuitry synthesis both minimum and maximum timing constraints must be

considered.

ISYN is an extension of the CMU-DA synthesis tools that deals specifically with interface

circuitry [Nestor87]. It incorporates a variant of a list scheduling algorithm used in microcode

compaction to support minimum and maximum timing constraints [FisherS I]. The algorithm,

called CSTEP, uses a priority function that determines the order in which operations are

scheduled. Operations are assigned a priority at each time step. Those with minimum timing

constraints are assigned a negative priority, delaying their placement until a later step. Those

with maximum timing constraints that would be violated if the operation were to be placed in

a later step are placed immediately. The remainder are placed according to the rules of data

dependency and resource allocation, as before. The completed schedule is then used to derive a

finite-state-machine that will control the elements of the design.

A BSIIISPS specification of an interface transducer is shown in Figure 4.3. The transducer is

between a simple synchronous interface and the Intel Multibus. The operation supported by

the transducer is the same asynchronous Master Read used as the main example of section

2.3.1. The transducer specification is composed of two procedures. The first, Adapter, is the

main procedure. It waits for a control signal, exgo, to be asserted and then calls the read

operation on the other interface, MasterRead, using the value of the exadr lines as the

argument to the procedure and asserting the value returned by the procedure on the exdato

lines. The operation of the transducer is synchronous to a clock signal that is specified in the

port declaration portion of the specification (not shown in Figure 4.3). The only signal

64 4- Transducer Synthesis

declared to be asynchronous is the xack signal on the Multibus side. Also, timing constraints
have only been specified for the Multibus side of the transducer.

main Adapter : = begin

end

WAIT(INPUTP(exgo)) NEXT

OUTPUTP(exdato, MasterRead (INPUTP (exadr)));

OUTPUTP(exack, 1) NEXT

OUTPUTP(exack, 0)

MasterRead(Address<23:0>)<1S:O> :=begin

OUTPUTP(bhen.l, TS.ENABLE) {L:mrOe};

OUTPUTP(adr.l, TS.ENABLE) {L:mr1e};

end

OUTPUTP(mrdc.l, TS.ENABLE) NEXT

OUTPUTP(bhen.l, 1) {L:mrO};

OUTPUTP(adr.l, Address) {L:mr1} NEXT

OUTPUTP(mrdc.l, 1) {L:mr2} NEXT TNEXT() NEXT

WAIT(INPUTP(xack.l)) NEXT

MasterRead = INPUTP(data. I) NEXT

OUTPUTP(mrdc.l, 0) {L:mr3} NEXT

OUTPUTP(adr.l, TS.DISABLE) {L:mr4} NEXT

OUTPUTP(bhen.l, TS.DISABLE) {L:mrS} NEXT

OUTPUTP(mrdc.l, TS.DISABLE) {L:mr6} NEXT

mrTenb: time(mrOe, mrO) GEQ Ons;

mrTena: time(mr1e, mr1) GEQ Ons;

mrTbs: time(mrO, mr2) GEQ SOns;

mrTas: time(mr1, mr2) GEQ SOns;

mrTbh: time(mr3, mr4) GEQ SOns;

mrTah: time(mr3, mrS) GEQ SOns;

mrTdis: time(mr3, mr6) GEQ SOns;

mrTcmd: time(mr2, mr3) GEQ 100ns;

s

10

1S

20

2S

30

Figure 4.3. Example BSIIISPS specification of an interface transducer (adapted from
[Nestor87]). The two interfaces are a simple synchronous interface and the Intel
Multibus. There is only one supported operation, the master data read operation. The
synchronous interface asserts a control signal (exgo) with an address (exadr) and expects
data to be returned (exdato) and signaled by another control signal (exack). There are
declared timing constraints only for the Multibus side of the transducer.

Related Synthesis Work- 4.2 6S

A CDFG, or VT-body in the terminology ofCMU-DA, is derived for each of the two procedures

in the specification. Each VT-body is scheduled separately using the CSTEP algorithm. There

is no optimization in the scheduling across VT-body boundaries. The final schedules are

shown in Figure 4.4. The dashed horizontal lines separate the operations into different time

periods.

ADAPTER

(OUTPUTP)
EXACK

MASTERREAD

I ADDRESS I
----~·-·-·-·-·-·~·-·-·-·-·-·-·-·-·r·-·-·-·-

c OUTPUTP ~HEN.L (OUTPUTP ~DR.L (OUTPUTP ~RDC.L
TS.ENABLE TS.ENABLE TS.ENABLE

I I I

(OUTPUTP) (OUTPUTP) (OUTPUTP)
§HEN.L ~DR.L MRDC.L

(,....-TN_E_X_T """)

~·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·,·-·-·-·-
1

(OUTPUTP)
MRDC.L

~·-

(INPUTP)
I AACK.L

(WAIT)

r-.-.-.-.- . -.-.-.-.- . -.-.-.-.-. -rs-:-D.ISABLE.-.-.-

- . rs.'DlsABLE- . - . - ·rs.oiSA.eLE- . - .
I I

(OUTPUTP ~HEN.L (OUTPUTP ~DR.L
-·-·-·-·-·-·-·-·-·-·-·-·

I DATA I

I

(OUTPUTP)
MRDC.L

Figure 4.4. Scheduled VT-bodies for the specification of Figure 4.3. There is a one-to-one

correspondence between a VT-body and a basic-block in BSI!ISPS. The nodes in the

graphs correspond to operations in the HDL description. The solid lines connecting nodes

represent data dependencies. Horizontal dashed lines separate the time steps of the

schedules. The rectangular nodes at the top and bottom of the VT-body for MasterRead

are the input argument to the procedure and the return value, respectively. Each

VT-body is scheduled separately using data dependency, sequencing (TNEXT), and

timing information. No schedule optimization is performed across VT-body boundaries ..

For this simple example, the allocation and binding steps are trivial. Each of the input and

output ports of the transducer is allocated a buffer, register, or synchronizer depending on its

declared type. The control logic for loading the registers and generating the proper events on

the output signal lines is derived from the schedule, which can be viewed as a state diagram

66 4- Transducer Synthesis

description of the finite-state-machine controller. Since all the signals are synchronous to the

same clock, it is straightforward to include all the combinational logic and state bits within a

single block. A block diagram of the synthesized circuit is shown in Figure 4.5.

EXDATO

EXADR

EXGO

EXACK

CONTROL
LOGIC

DATA.L

ADR.L

BHEN.L

MRDC.L

XACK.L

Figure 4.5. Synthesized circuitry for the VT-bodies of Figure 4.4. Input and output ports

are allocated buffers, tri-state drivers, synchronizers, and registers (if they carry data).

All the control logic is lumped into a single synchronous finite-state-machine.

There are three major shortcomings to this approach. First, and most important, is the lack of

optimizations across VT-bodies. The transducer circuitry is not permitted to use both

interfaces in parallel. Data must first be collected on one side, then the operation is executed

on the other side and the return data collected. Finally, the return data is transferred on the

other interface. This artifact of the synthesis procedure cannot be eliminated by in-line

expansion of the procedures because it is not clear how statements from each procedure can

overlap in time. The sequencing constraints on one side restrict the sequencing of the other

side as well.

The second deficiency concerns asynchronous signals. Since the entire circuit (finite-state

control and registers) are synchronous, all asynchronous signals are immediately

synchronized before being used. In the example above, this means that although the exadr

lines could be deasserted 50ns after the mrdc line is deasserted, they are not deasserted for a

full clock cycle (a parameter of the other interface). In larger examples more substantial

performance improvements may be possible if some events can be generated solely using

asynchronous logic rather than first synchronizing each signal.

The last deficiency concerns the interaction between the specification and synthesis methods.

Since every statement in the BSIJISPS description translates to a VT construct, a complete

specification of the interface events cannot always be included. In the example of Figure 4.3,

there is no specification that the xack line will be deasserted within 65ns after mrdc is

deasserted (in line 19). If a wait statement were to be used to express this then its

corresponding VT node will generate an extra state in the control logic to test that this

Related Synthesis Work- 4.2 67

condition is actually met. Furthermore, since the interface specification is embedded in the

circuit description, the specification of two transducers with one interface in common can not

share a single description for that interface. Different specifications are required so that all

the interactions between the interface and the internal circuitry are tuned for each specific

transducer.

Synthesis from Input/Output Specifications 4.2.2

Some of these problems can be alleviated if the synthesis procedure begins with specifications

of the input/output event sequences. The internal behavior of the circuit is not specified,

instead the specification consists of a partial ordering of the transitions on the input and

output signals of the circuit. This eliminates the problem of embedding the interface details

within the internal circuit specification. Also, since the description is not subdivided into

separate procedures, there are no artificial boundaries that make it difficult to optimize.

However, most attempts at this type of specification have emphasized either asynchronous or

synchronous behavior, and never included both types.

Variants of Petri nets have been used for input/output event specification (see section 2.3.2). In

fact, synthesis methods have been developed to translate each element of a Petri net

description (i.e., the places, transitions, forks, and joins) into hardware primitives

[Misunas73]. However, these methods tend to generate circuits that are quite complex. The

overhead incurred for the ability to directly translate a general graph causes the circuit to be

much larger than necessary. For example, a place in a Petri Net might be only a simple

change in one output signal but in the direct transformation scheme this corresponds to an

entire flip-flop (i.e., state bit). The flip-flop indicates the presence of the Petri net token in its

corresponding place. Successor places and transitions are enabled (and predecessors disabled)

based on the value of this flip-flop. The logic level of the output signals are derived from the

flip-flops assigned to each place.

Another approach is to consider each transition on a signal wire as a transition to a new state

and then translate the resulting state diagram into sequential logic [Hollaar82]. This method,

when applied to asynchronous designs, suffers from similar problems of unnecessary

complexity. The same one-hot state assignment (i.e., one flip-flop per state) is used with the

same results on circuit size. Of course, the problem is easier for completely synchronous state

diagrams. Since there are fewer race conditions and no hazards in synchronous machines,

optimized state assignment and Boolean minimization algorithms can be used to obtain more

efficient designs [DeMicheli85, Rudell87].

This type of behavior specification, using Petri nets or state diagrams, has been common in the

description and synthesis of self-timed circuits [Molnar85, Chu86a]. Self-timed circuits are

speed-independent designs where the relative timing of events is not important but rather

only their proper ordering. If some simple retrictions are placed on the topology of the nets

then efficient synthesis methods are possible. There are two important properties: liveness

68 4- Transducer Synthesis

and persistency. A net is live if all the transitions for a signal lie on a cycle and alternate

between rising and falling transitions. This implies that the specified signal transitions are

actually implementable and the circuit returns to the same state after some time. A signal is

persistent if once a transition is enabled, it cannot be disabled by another event and must

eventually occur. Persistency is a property that must hold for systems modeled as Petri nets

[Chu87]. These restrictions have posed no limitations on self-timed systems because most

follow a well-behaved signalling protocol such as the four-phase two-wire handshake. One

module signals it is ready by raising a request line which is acknowledged by an output signal

from the other module. Once the acknowledge is detected by the requesting module it lowers

its request line to prepare for the next request. The acknowledging module then does the same

by lowering the acknowledge line. This protocol is guaranteed to generate a graph that will

meet the liveness and persistency requirements.

Once a live and persistent graph is obtained, it is transformed into a state transition graph

where there are as many state-bits as input and output signals. These types of graphs have

been called encoded interface state graphs (EISG in [Molnar85]) or signal transition graphs

(STG in [Chu87]). Arcs in the state graph correspond to transitions (i.e., a change in state) on

one of the signals. The state graph is used to build a Karnaugh map for each of the outputs.

The entries of the map correspond to the new value of the output variable in its new state. If

the state has an arc corresponding to a transition on an output then the signal is unstable with

respect to that output signal and the entry in the map is the complement of its current value

(i.e., a transition in its value). If the state does not have an arc then it is stable and the entry in

the map is the same value as the signal in the current state (i.e., no transition). If two states in

the graph have the same state encoding then a new internal signal is created and transition

arcs are added to the graph so that this new signal will have a different value in the previously

identically encoded states. Logic equations are then derived from the Karnaugh maps to

implement each of the output signals.

An example STG specification, for a FIFO stack control cell, is shown in Figure 4.6. When the

cell receives a request for a data element to be shifted from the previous cell it initiates a

request to the next cell. This makes room for the incoming data. Once the next cell

acknowledges the transfer, the data can be loaded into the cell and the original request

acknowledged.

The circuit generated from the STG specification is shown in Figure 4. 7. There are three

component circuit blocks, one for each unique output: Ai, L, and R0 (Dis identical to R0). The

logic equations for R0 and Ai are of the form Q= DG+ QG', where Q is the output signal. These

can be replaced by a D-type flip-flop with input D and control signal G (or CLK in Figure 4. 7).

Similar substitutions for other flip-flop types can be made whenever an output signal equation

includes the output signal or its complement as one of its literals.

Related Synthesis Work- 4.2
69

70

L D

~
1 1

~
Ri) Ro
Ai (Ao

<
L- ~Ai+~Ri-)

(

L+ Ro+ 'Ao L+~D-
- Ri <

L- ~AI- ~RI+)L+
Ro- 'Ao- J

Figure 4.6. Example STG specification of a circuit block (adapted from [Chu86a]). This

cell is the control for one word of a FIFO stack. There are two pairs of

request/acknowledge lines to communicate with neighboring cells and two other control

signals (L and D) to control the latching and storing of data. The symbols + and -

appended to the name of a signal signify a rising or falling transition. The symbol ' is

used to signify a complemented value.

L D

'I'

I I

Ri ' D '
_,

.... Ro
Q r---<

....
;':: CLK

' C/L

r
D _,

_,.
Q '

Ao Ai

CLK ~

Figure 4. 7. Synthesized circuitry for the STG specification of Figure 4.6. The Boolean

equation for the combinational logic block is: L=DAoRi'+D'Ao'Ri. Two D-type

level-triggered flip-flops are used to implement the equations for Ai and Ro.

4- Transducer Synthesis

There are two major shortcomings with this approach. The first is that timing constraints are

not considered. They would greatly complicate the process of deriving a state transition graph

from the Petri net specification. This limits the method to self-timed systems where this is not

a serious limitation because components of these systems typically use the same handshaking

protocol to communicate (e.g., four-phase handshake). The problems associated with

integrating these systems with off-the-shelf components that do not follow the same protocol

and require particular timing relatuions between events are not addressed.

The second shortcoming concerns the property of persistency. Again, well-behaved protocols

inherently meet this requirement. However, many practical interfaces, including most bus

interfaces, do not. For example, whether an event or another occurs may signal a different

way of completing an interface operation. A synthesis method is required that does not impose

this restriction and can handle conditional sequences of events.

Related Synthesis Work- 4.2
71

A New Synthesis Method 4.3

The deficiencies of the above approaches make them inadequate for transducer synthesis. To

reiterate, transducers require a synthesis method that can (1) handle timing constraints on

signal events, (2) synthesize both synchronous and asynchronous components, and (3) focus on

generating circuits with as close to the maximum communication bandwidth as possible.

None of the methods of the previous section meet all these requirements. In this section, I will

briefly outline a new synthesis method, called Suture, that does.

The Suture method has four novel aspects. The first is that Suture does not directly synthesize

a complete and correct circuit. Rather, it first constructs a skeletal circuit that contains all the

crucial elements to implement the specification of the transducer (i.e., to generate the

appropriate transitions on the output signals). However, the circuit may be incorrect. It may

violate some timing constraints and contain race conditions. These problems are corrected in

later steps by local modifications of the skeletal circuit.

Second, Suture supports both synchronous and asynchronous events and is not biased toward

one type or the other as are previous methods. Specifications can be fully synchronous, fully

asynchronous, or a mixture of the two. Many real systems combine the two types of signals

when optimizing communication across an interface. A general synthesis method must

support both.

The third novel aspect is that Suture synthesizes the transducer from primitive elements

rather than using complex components that implement higher-level functions directly. For

example, flip-flops, latches, and random logic are used to implement finite-state machines

rather than programmable logic arrays (PLAs). The resulting circuit can still be optimized by

the standard methods but has a major advantage, namely, that the initial circuit structure is

simple enough to easily accomodate the local changes required to satisfy timing constraints.

Also, by basing the synthesis method on primitive logic components it is easier to ensure that

the method is independent of the implementation technology.

Lastly, Suture emphasizes communication bandwidth over circuit size because a transducer

must add as little delay as possible to the communication path between two interfaces. Events

should occur as quickly as the timing constraints and data dependencies of the interfaces will

allow. Furthermore, Suture only generates fully static designs. The improved robustness in

dealing with both synchronous and asynchronous signals and the added flexibility for

low-speed testing more than justify the larger circuit size implied by this choice. Unlike

internal elements of circuit blocks, transducer logic is typically not replicated within a design.

Since only one instance of this logic is used, a slightly larger design for an interface transducer

is usually acceptable while a smaller but slower and less robust design may not be.

The Suture method forms the core of Janus, a synthesis tool for the logic design of interface

transducers. The algorithms in Janus and Suture will be described in detail in the next

72 4- Transducer Synthesis

chapter and their implementation in Appendix C. However, the Suture method can stand

alone and be applied to the synthesis of arbitrary control logic. The remainder of this section is

devoted to providing an overview of this approach and is not intended to include a complete

description of the algorithms, this is relegated to Chapter 5. The overview is followed by a

summary of the results of its application to three examples.

Overview of the Method 4.3.1

The input to the Suture method is the specification of an event sequence. The output is a logic

specification of a circuit that will have inputJoutput behavior as specified by the input. Waves

diagrams can be used to generate the input data structures for Suture. Diagrams are

translated into event graphs that are similar to that of Figure 4.6 (see section 5.2). The nodes

of the graph correspond to signal transitions and the arcs to two types of constraints, the

ordering and minimax timing constraints. Simultaneity constraints cause their paired nodes

to be grouped into super-nodes.

The synthesis method can be divided into four steps: skeletal circuit construction, timing

constraint satisfaction, race elimination, and logic optimization. The first step constructs a

circuit that may contain errors. These are corrected by local modifications in the next two

steps. Finally, the sequential logic is simplified by applying transformation heuristics and the

combinational logic optimized using standard techniques.

The first part of building the skeletal circuit is to assign a set-reset-dominant (S-R*) latch to

each of the output signals of the circuit. An S-R* latch can be implemented by two

cross-coupled NOR gates. Using a latch for each output signal makes it easy to generate rising

and falling transitions. A rising transition is generated by asserting the set input and a

falling transition by asserting the reset input. Furthermore, a latch for each output

eliminates the possibility of state-decoding hazards that may occur with more compact

state-encoding schemes.

The S-R* latches of the skeletal circuit are interconnected during a breadth-first traversal of

the graph that uses the arcs corresponding to the ordering constraints. Once all the incident

arcs to a node have been traversed, the node is implemented by choosing a circuit template that

will generate the transition represented by the node. Super-nodes permit a single template to

generate transitions on all the output signals represented in the super-node. Of course, only

output nodes need to be implemented. Input nodes are the responsibility of the circuit's

environment.

Suture derives its name from the fact that the synthesis method is based on template selection.

Input signals and the inputs and outputs of the S-R* latches corresponding to each output

signal are stitched together by the templates. These are chosen on the basis of the

synchronous properties of the node to be implemented and those of the tail nodes of all the

incident ordering arcs.

A New Synthesis Method -4.3
73

Async to Async
Sync to Async

Sync to Sync
(same clock)

Sync to Sync
(different clock)

Async to Sync

D-FF

SYNC

Figure 4.8. Templates used by Suture to construct a skeletal circuit. They stitch together

input signals and the inputs and outputs of the set-reset latches corresponding to each

output signal. There are three basic types corresponding to the synchronous properties of

the nodes in the event graph for the circuit. They are connected to the set or reset input of

a latch depending on whether the template is used to generate a rising or falling

transition on the output signal.

There are only three basic template types (see Figure 4.8): one for generating an asynchronous

event (not aligned with a clock edge), one for generating synchronous events from other

synchronous events (relative to the same clock signal or phases of the same clock), and one for

generating synchronous events from other asynchronous events (synchronous to different

clocks or completely asynchronous). The AND gate in each template is used to generate the

condition under which the signal transition is to occur. The inputs are collected from the tail

nodes of the incident ordering arcs of the node. Whether the signals are complemented or not

is determined by the logic level after the transition represented by the tail nodes (i.e.,

complemented for a falling transition, uncomplemented for a rising transition).

Other inputs to the AND gates are used when conditional behavior is specified. Conditional

event sequences are enabled (i.e., by adding an input to the AND gate) when the enabling

event of a Waves diagram segment occurs. A similar set of enabling conditions is used for

looping segments. These are more complex expressions that may include the outputs of a loop

iteration counter.

The next synthesis step is to check that the skeletal circuit meets the timing constraint of the

event graph. Two types of timing constraints may be violated: minimum or maximum

constraints. The circuit can be automatically modified to meet a minimum timing constraint

while for maximum timing constraint violations the designer will either to provide a faster

circuit library or relax the constraint.

The violation of a minimum constraint means that the circuitry used to generate the sequence

of events spanned by the constraint is too fast. Therefore, a delay element must be used to slow

74 4- Transducer Synthesis

it down. The delay elements may be inverter chains, flip-flops, or delay-lines depending on the

available circuit library (the circuit library is discussed in more detail in Appendix C). The

delay is added to the corresponding input of the circuit template used to generate the too early

event (the head of the minimum constraint arc). If the event from which the constraint

emanates (the tail of the minimum constraint arc) is not one of the template's inputs then it

must be added. This corresponds to an extra ordering constraint. This direct procedure (as

opposed to adding delay along an indirect path between the two nodes) guarantees that no

maximum timing constraints will be violated in satisfying the minimum constraints.

Adding delay is not common in most synthesis techniques. Typically, operation sequences are

scheduled to occur as quickly as possible. However, timing requirements may be imposed on

the design when previously designed or off-the-shelf components are involved. This is quite

different from the situation where the entire design is under the control of the designer.

Maximum timing constraint violations imply that the circuitry used to generate a transition is

too slow. Since Suture synthesizes the fastest possible circuit prossbile with the available

library, there is no automatic modification that can be performed. The designer must be

notified of the violated constraint and must either provide a faster circuit library or change the

timing and ordering constraints to allow more time for generating the too late event. The

synthesis procedure must then be repeated for the entire circuit.

The third step in Suture's synthesis procedure is to eliminate any race conditions that may

exist as artifacts of the skeletal circuit construction. Corrections for race conditions are the

last set of local modifications required before the circuit is fully correct. There are three types

of possible race conditions. One is that the set of inputs to the AND gate of a template may not

all be true at the required time (i.e., a signal may have already changed before the others

reached the logic levels required to trigger the event). Another is that the two events on a

signal that is an input to a synchronizing template may be too close together, resulting in

neither being noticed on the output of the synchronizer. And lastly, the set or reset conditions

of a latch may be true earlier than needed to generate the event (causing it to occur

prematurely) or are again true after the event has already occurred (and cause an erroneous

reoccurrence).

All three types of races can be detected by a traversal of the graph from each output node that

assigns an interval of occurrence to each event. The time interval represents the earliest and

latest time the event can occur relative to the event of the starting node. Each type of race

condition can be detected based on these intervals.

The required correction is similar for the first two race conditions, a S-R* latch is added to trap

and hold the transitory event and the output of this trapping latch replaces the signal in

question as the input to the template. In the first case, the trapping latch records that the

event occurred while waiting for the occurrence of the other events with which it is gated. In

the second case, the trapping latch extends the duration of the asynchronous event so that it

can be synchronized. And lastly, the extra latch holds the reset input of the S-R* latch active

until the set input becomes inactive. The third can be corrected by adding inputs (i.e., the

state of other signals) to the AND gate of the template that can insure the enabling condition

A New Synthesis Method- 4.3
75

for the event occurs only at the right time. If no other signals can be used, it may be necessary

to use a latch to record that an event occured and gate the latch's state into the template AND

gate. These corrections are described in more detail in section 5.4.3.

Finally, the resulting circuitry is optimized. The templates used by the Suture method are

meant to provide flexibility in modifying the circuit to correct constraint violations and race

conditions. However, the circuit that is finally constructed may be less efficient than

necessary. Two types of size reductions are possible: sequential logic transformations and

combinational logic optimizations. Sequential transformation is performed first. Stated

simply, it is the transformation of the set of latches, flip-flops, synchronizers, and gates that

correspond to each output signal into a smaller set. This can be done by exploiting sequential

logic equivalence or replacing sequential logic with combinational logic if certain conditions

are met (see Figure 4.9). Multi-level combinational logic optimization can be used on the

resulting circuit to combine common sub-circuits [Brayton87].

76

~D;(Fey-s
Q ~ R*

s ~ =(3- ~ ~=D-R I _

Figure 4.9. Two examples of sequential logic transformations. The first combines two

flip-flops and a latch into a single flip-flop and combinational logic. the second replaces a

latch with a simple AND gate that has the same output behavior as a reset-dominant

latch under the specified input behavior.

4- Transducer Synthesis

Examples of its Application 4.3.2

Three examples can be used to demonstrate the interesting features of Suture. The first is a

fully synchronous three-bit counter. The second is a fully asynchronous FIFO stack control

cell (from section 4.2.2). The last is a mixed synchronous-asynchronous interface transducer

(from section 4.2.1).

The specification for the input/output behavior of a three-bit counter is shown in Figure 4.10.

The Waves diagram includes the shape of the output waveforms and the timing relations that

must be maintained between logic transitions. Furthermore, the first event on BitO is

annotated to only be generated if the condition (AND (NOT BitO) (NOT Bitl) (NOT Bit2)) is

true. This establishes a looping three-bit counter.

(9 Clk

nnn Bit 0 II>

nnn Bit 1 II>

nnn Bit2 II>

Figure 4.10. Waves specification for the input/output behavior of a three-bit counter.

Seven timing constraints are used to specify that each state of the counter must last for

one cycle of the clock. Simultaneity constraints exist between all events drawn as

occuring at the same time. The first event on BitO is annotated to only be generated if the

condition (AND (NOT BitO) (NOT Bitl) (NOT Bit2)) is true. The condition is not visible

in the diagram but can be accessed by the user through a mouse operation on the event.

It is used to establish a looping three-bit counter.

Of course, if it is known in advance that a counter will be required then a great deal of effort

can be spared by instructing the algortihm to implement it directly. However, for explanatory

purposes a counter is a good example with a familiar logic implementation for comparison.

Suture's first step is to construct an event graph from the Waves diagram (see Figure 4.11).

The transformation is straightforward. A node is generated for each event in the diagram.

Some events are collected into super-nodes by simultaneity constraints. The solid arcs in the

graph correspond to ordering constraints (in this case, they are all implicit ordering

constraints). The dashed arcs correspond to the timing constraints visible in the diagram. A

start marker is associated with the first event and an end marker with the last group of

simultaneous events.

A New Synthesis Method- 4.3 77

2@Clk .-.-

Figure 4.11. Event graph derived from the Waves diagram of Figure 4.10. Nodes in

graph correspond to events on the waveforms. Nodes are grouped into super-nodes when

simultaneity constraints exist between their respective events. Solid arcs represent

ordering constraints. In this case, they are all implicit ordering constraints. ~o explicit

ordering constraints are present in the diagram. Dashed arcs represent the timing

constraints visible in the diagram. Start and end markers are associated with the first

and last event groups.

The circuit is constructed by traversing the graph and selecting the appropriate templates (see

Figure 4.8). In this case, with a fully synchronous specification, all the templates are the

same, consisting of a flip-flop and AND gate (see the top half of Figure 4.12).

The inputs to each AND gate correspond to the incident ordering arcs of the node being

implemented. Some extra inputs are added to some of the gates to distinguish multiple rising

or falling transitions on two of the signals and to eliminate some race conditions. Only the

third type of race condition exists in this graph. A set or reset condition that is true earlier or

later in the event sequence than it should and causing events to occur in the wrong order. All

of the occurrences of this race condition are corrected by adding some extra inputs to the

template AND gates.

The circuit is quite large and contains many flip-flops. However, after some sequential logic

transformations are applied to the circuitry for each of the output signals, the more familiar

and much smaller three-bit counter implementation is obtained (see the bottom half of Figure

4.12). Again, the Suture method is intended to provide a framework for the synthesis of

circuits with timing constraints. The circuit initially generated provides such a structure.

78 4- Transducer Synthesis

Any state of the counter can be extended in time by adding delay to the output signal of the

appropriate template. Of course, this may limit the extent of optimization that is achievable.

In this case, with no timing constraint violations in the skeletal circuit, no delay elements are

required and the circuit can be transformed to the optimal implementation.

BitO
Bit1
Bit2
BitO
Bit1
Bit2
BitO
Bit1
Bit2
BitO
Bit1
Bit2

BitO
Bit1
Bit2
BitO
Bit1
Bit2
BitO
Bit1
Bit2
BitO
Bit1
Bit2

BitO~BitO

BitO
Bit1~
Bit2 ___J.._) ~ l...:
BitO
Bit1~
Bit2~

BitO
Bit1
Bit2

BitO
Bit1
Bit2

B1tO

BltO -\~ Blt1
B1t1-/~

BitO ---r_

5
Q Bit1

R*

5
Q Bit2

R*

Unoptimized

Optimized

B1t1 ---l_.IL\~
Bit2 -/~ Bit2

Figure 4.12. Circuit synthesized from the event graph of Figure 4.11. Before any

optimizations are performed, the circuit is as shown above the horizontal line. All

flip-flop control inputs are connected to the CLK signal. The more familiar three-bit

counter implementation is obtained after sequential logic transformations are applied.

These same properties of the method are demonstrated again within the context of a fully

asynchronous example. The specification of Figure 4.13 is for the FIFO stack control cell of

section 4.2.2. As expected for a self-timed subsystem, only ordering constraints are entered in

the specification. Its corresponding event graph is shown in Figure 4.14.

The circuit constructed from the event graph is shown in Figure 4.15. Unlike the previous

example, the unoptimized circuit is not especially complex. However, after some simple

transformations, similar to those of Figure 4.9. (e.g., an S-R* latch with both inputs gated by

A New Synthesis Method- 4.3
79

the same signal becomes aD latch with input (Q+ S)R', where Q is the latch output) the circuit

obtained is identical to that ofFigure 4.7 which was derived from the Petri net specification of

Figure4.6.

80

Ri .a

L II>

Ro (and D) 11>

Ao .a

Ai II>

Figure 4.13. Waves specification of a FIFO stack control cell [Chu86a]. There are only

ordering constraints in this specification of an asynchronous control cell for a self-timed

FIFO stack.

Figure 4.14. Event graph for the specification of Figure 4.13. The graph arcs are all

ordering constraints and include no timing constraints. This is typical for a component of

an asynchronous self-timed system.

4- Transducer Synthesis

Ri
Ro

L s
Q Ro

Ri R*
Ro

L

s
Q L

R*

Ai
Ro

L s
Q Ai

Ai R*
Ro

L
Unoptimized

R;~Ro
Optimized

R~~
Ao ~L
Riy Ro

Ro~A; Ao

Figure 4.15. Circuit synthesized from the event graph of Figure 4.14. Mter sequential

logic transformations it is identical to that of Figure 4.7.

The example again demonstrates that although Suture first constructs a more complex circuit,

after optimization it is very similar - in this case, identical - to the circuit constructed by the
less general methods of section 4.2.2.

The next and last example is a circuit with both synchronous and asynchronous signals as well
as timing constraints that will require attention. The example is taken from section 4.2.2 and
is a simple interface transducer between the Intel Multibus and a synchronous interface. Only
one operation is supported by the transducer, a data read to a memory that is connected to the
bus. The specification for the transducer consists of two Waves diagrams, one for each

interface of the transducer (see Figure 4.16).

A New Synthesis Method- 4.3 81

~ CLK

...,EXGO

"""EXADR

..., EXACK

"""EXDAT

ADR[0:19]* 0.

MRDC* 0.

DAT[0:1~]* .0

XACK* .0

·.··.· ·.·.·.·.···.· .. ·:-:Y Data (:::-:·

Figure 4.16. Waves specification of the interface transducer of section 4.2.1 [N estor87].

This should be compared for readibility and completeness with the BSIIISPS specification

of Figure 4.3.

The Waves diagrams for this example have characteristics not present in the previous two

examples. Some signals are bundles of wires and are used to represent events on the entire

group of signals rather than just one at a time. Furthermore, these signals carry da.ta,

represented in the specification by the labels along the waveforms. And lastly, the waveforms

include signals that are tri-stated and must be separated into two: one to carry the logic level

and one to enable or tri-state the logic signal.

Data transfer is one of the primary functions of an interface transducer. In fact, by analyzing

the data dependencies between the two interfaces the two unconnected event graphs derived

from the two diagrams can be interconnected. The combined graph is shown in Figure 4.17.

The darker arcs represent those added to the graphs by the data dependencies. Three

minimum timing constraint arcs are also added to ensure the proper setup time at latch

inputs. Two of the three are parallel to the data dependency arcs and the third ensures that

MRDC* will not be raised before the data has been latched.

82 4- Transducer Synthesis

Figure 4.17. Event graph for the specification of Figure 4.t6. Two ordering arcs

interconnect the graphs of each Waves diagram (boldface arcs) based on data

dependencies across the interfaces. In this case, Address must be transferred in one

direction and Data in the other. Start and end markers are specified by the user. The

signals with the = preiiX are the tri-state control for the signals with the same name.

The logic design for the transducer is shown in Figure 4.t8. The interesting features include

two 50ns delay elements required to meet the address setup and hold requirements of the

Multibus. They delay the assertion of the command and tri-stating of the Address lines. The

circuit also contains latches for the data path and two tOns delay elements are used to ensure

setup time on their inputs. The control signal for the latches is determined by the same

method as that used to generate the data dependency arcs for the graph. Note that the third

tOns minimum timing constraint is not represented in the circuit because the logic circuit

used to generate the event on MRDC* has an equal or greater delay. Three extra S-R* latches

(top right of Figure 4.t8) are used to correct race conditions. They record the occurrence of

certain events and are used to make sure that events occur in the proper order. Lastly, an

extra signal is generated to control the quiescent value of the output signals and reset the race

correcting latches. The OPDisable is set and reset by the events associated with the end and

start markers.

A New Synthesis Method- 4.3 83

It is interesting to note that although the circuit of Figure 4.18 is about the same number of

gates as that of Figure 4.5 it has a larger communication bandwidth. Suture's ability to

synthesize asynchronous components where required gives it this advantage. For example,

the setup and hold times for the ADR lines on the Multibus are equal to the required 50ns

while for the realization of section 4.2.1 they are one clock cycle. This extra time is the

overhead incurred by performing the data transaction synchronously.

84

EXGO=
=ADR* s I
MRDC* R* Q 1---
=ADR*- ·'----'· =ADR*

MRDC*! --------_.~ =BHEN*
=MRDC*

EXGO!
XACK*

EXACK!

EXACK

s
R*

s
R*

Q
MRDC*

Ql----
EXACK

EXGOll Q EXGO!
OPDisable R"

MRDC*ll Q MRDC*!
OPDisable R*

EXACKll Q EXACKI
OPDisable R*

0 ---f>-- BHEN*

=BHEN~

OAT• LC:Jd)J
XACK*--{>¢

1

r- EXDAT

EXGO ~ OPDisable
EXACK Q (force output to
= ADR* R quiescent states)
EXACK!

Figure 4.18. Circuit synthesized from the event graph of Figure 4.17. A special signal is

generated to keep the wires in their quiescent states (OPDisable) and is a reset input to

all the output latches. It is also used to reset trapping latches used to correct for race

conditions (three of which are in the top right portion of the figure). Five delay elements

(two tOns, two 50ns, and one lOOns) are added to the circuit to enforce timing constraints

corresponding to latch and Multibus setup and hold times and minimum command

assertion time. Three tOns dealay elemants are required to meet data latch setup times.

All the flip-flops in the circuit are clocked by the CLK signal. Only one signal's circuitry

(EXACK) can be optimized by sequential logic transformation (see Figure 4.9), its

optimized form is not shown. The transformation is possible because a synchronizer

behaves as aD-type flip-flop to signals already synchronous to the clock.

4- Transducer Synthesis

These examples have provided an overview of the Suture algorithm. In the next chapter, I will

review each of the steps in more detail and discuss how the method is used to synthesize

interface transducers. Some aspects of interest include: generation of the event graphs from

the collections of Waves diagrams that describe the transducer, optimization of the graphs by

exploiting don't care conditions and the compressability of synchronous events, and generation

of the transducer's data path. After Suture is applied to the event graphs of each interface

operation (generating an independent circuit for each), the resulting circuits are combined

into a single transducer prior to the sequential and combinational logic optimizations

discussed above. The tool that integrates Suture with these pre- and post-processing steps is

called Janus and is the subject of Chapter 5 (Appendix C provides additional implementation

details).

A New Synthesis Method- 4.3
85

<This page intentionally left blank.>

86 4- Transducer Synthesis

Janus 5

Janus is a tool for the automatic synthesis of interface transducer logic. It uses Waves
diagrams as input and generates a logic specification of the transducer. Janus begins by
building event graphs for each of the operations ssupported by the transducer. It then uses the
Suture algorithm of Chapter 4 as the backbone of its synthesis procedure. Extensions include

the synthesis of data-path elements and constructs for handling conditionals and loops. Janus,
like Waves, is implemented in Interlisp-D/LOOPS.

This chapter is composed of six sections. The first section defines the class of transducers

which Janus can synthesize and the type of behavior specification required as input. The
second section describes the generation of event graphs from the Waves diagram input and

their manipulation and annotation prior to synthesis. The third and fourth sections detail the
methods used by Janus for data path and control synthesis. The rlfth section describes the

extensions used to handle conditional and looping event specifications. The last section covers
the logic optimizations, both sequential and combinational, that are used to reduce the size of

the final design.

87

A Synthesis Tool for Interface Transducers 5.1

Janus is the Roman god ofbeginnings and endings. He is often depicted with two faces looking

in opposite directions. Busts of Janus adorned the gates of Roman cities, looking both in and

out from the city wall. His name is appropriate for the synthesis tool that is the subject of this

chapter, a tool for the automatic logic design of interface transducers.

Janus begins with a specification of the input/output behavior of the transducer's two

interfaces and generates the logic specification to be used in realizing the transducer circuitry.

A Y-chart showing the transformation performed by Janus is shown in Figure 5.1.

BEHAVIORAL STRUCTURAL

i/o relations

algorithms · ················· CPUs, mems

register transfers data paths, FSMs

Boolean eqns gates, FFs

differential eqns

masks

standard cells Implementation

module generators

floorplans ·················

PHYSICAL

Figure 5.1. A Y-chart for Janus. Janus transforms a behavioral specification of the

transducer (at the level of input/output behavior) into a structural description (at the

level of gates and flip-flops). The mapping to a particular implementation technology is

left to other tools [Sangiovanni86, Leive81].

The transformation begins with a specification in the behavioral domain. The input/output

specifications used by Janus are placed above algorithmic specifications because they do not

imply that the circuit implements a specific algorithm. The transformation ends in the

structural domain with a collection of flip-flops, latches, and logic gates. The mapping of the

structural specification to a specific technology, and then to an actual physical realization, is

left to implementation tools and is outside the scope of this dissertation [Sangiovanni86,

Leive81].

88 5- Janus

Janus uses the Suture algorithm described in the previous chapter as its backbone and extends

it in two directions. First, it generates the required event graphs from a collection of Waves

diagrams that describes the behavior of the interfaces being connected. The graphs are

modified so as to consist of only rising and falling events before they are used by the Suture

algorithm to generate the transducer control circuitry (see section 5.2). Second, Janus

performs limited data path synthesis (see section 5.3). Transducer data paths consist of the

latches and multiplexers required to transfer data through the transducer.

Janus, like Waves, is implemented in Interlisp-D/LOOPS [Bobrow83, Stefik86, Xerox86].

Since it uses data structures derived from Waves timing diagrams, it is simpler to implement it

in the same single address space programming environment. Janus' implementation details

and a description of its data structures can be found in Appendix C.

Specification Using Waves Diagrams 5.1.1

As discussed in section 4.1.2, an interface transducer specification consists of the two

interfaces to be connected and the operations that the transducer must support. The Janus

icon acts as a catalog of interface transducers currently loaded into virtual memory and also

provides access to transducers already created and stored in files (see Figure 5.2).

Figure 5.2. The Janus icon and its menu, a catalogue of all the transducers loaded into

virtual memory. By clicking the mouse button over the icon the user can access all

currently loaded transducers. In the case above, three transducers are loaded and the

user has selected The Multibus Design Frame.

A transducer is symbolized on the screen by an image like that of Figure 5.3. The interlocking

blocks are used to specify the name of the transducer, the interfaces it connects, and the

operations it supports. These elements are visible in the icon except for the list of interface

operations. The operations are accessed through the transducer menu, available from the

center block of the icon.

A Synthesis Tool for Interface Transducers- 5.1 89

Figure 5.3. A Janus interface transducer icon. The name of this transducer is The

Multibus Design Frame and it connects the interfaces called Multibus Design Frame and

Multibus. The list of operations that the transducer supports can be obtained from a

pop-up menu obtained by clicking the mouse over the center block of the diagram that

symbolizes the transducer connecting the two interfaces.

Once the transducer has been specified, the user can invoke Janus to synthesize the circuit

through the transducer menu. Besides the specification of the operations to be supported and

the synthesis of the transducer logic, other menu options permit the user to have only some

intermediate synthesis steps performed. For example, the user may request that Janus check

the specification diagrams and generate a list of errors and warnings if the specification is

inconsistent or includes features that the synthesis process cannot handle (see section 5.1.2

and Appendix C). The user can also request that only the translation from Waves data

structures to Janus data structures (i.e., diagrams into event graphs) be performed. This

feature is useful in separating a transducer from its specification and thus no longer requiring

the Waves diagrams to be simultaneously residing in virtual memory.

Limitations of the Implementation 5.1.2

Janus has three significant limitations: (1) it only supports atomic non-overlapping

operations, (2) data transfers are of constant width, and (3) it provides only limited error

reporting.

The first limitation concerns the basis of Janus' model of interfaces, namely, the concept of

indivisible operations (see section 4.1). Janus is restricted to those interfaces where

operations do not overlap and only one operation is active at one time. Most commercial

busses, even packet-switched busses, can be described under these restrictions by using

internal interface state to hold the information that must extend from one atomic operation to

another. By treating each operation separately, Janus can synthesize the circuitry for each

operation independently and then merge them together. To handle overlapping operations it

would be necessary to describe constraints between events of different operations and take

these into account during synthesis. Although these constraints can be expressed in Waves

diagrams, if in a somewhat cumbersome manner (by means of the merge labels described in

section 3.3.3), Janus does not currently support this capability in its synthesis algorithms.

The second limitation is that data transfers through the transducer must be of the same width.

Multiplexers and shift registers may be required to handle different width transfers. These

capabilities can be easily incorporated into Janus by generating multiplexer control signals

90 5 -Janus

and events as for the case of multiplexed data paths (see section 5.3.2). However, this
capability has not yet been implemented.

The last limitation, is that error reporting in Janus generates a textual description of the error
rather than directly highlighting the offending objects in their Waves diagram. This can be
remedied when Waves and Janus are reimplemented on top of a true design data base rather
than just an object-oriented environment. Persistent objects, that is, data structures with
unique identifiers, can be retrieved from the data base as required rather than being restricted
to simultaneously residing in virtual memory.

Removing these limitations does not conflict with the basic approach of Janus. They are still
present only because they do not have a large impact on the class of transducers that can be
synthesized and the effort required is not easily justified for this initial version of Janus.

The remainder of this chapter deals with Janus' capabilities. It is broken into sections that
correspond roughly to the stages in Janus' synthesis process beginning with the generation of
event graphs from Waves diagrams to the optimization of the synthesized sequential logic.

A Synthesis Tool for Interface Transducers- 5.1 91

Generation of the Event Graphs 5.2

The event graphs used as input to Janus are derived directly from Waves timing diagrams.

Two distinct graphs, one for each side of the tansducer, are constructed for every interface

operation supported by the transducer. The nodes of the graph have a one-to-one

correspondence with events in the diagram (i.e., the transition on signal waveforms). The arcs

of the graph are of two types corresponding to the ordering and min/max timing constraints

existing between the events.

Janus begins its translation by creating data structures for each of the signals that takes part

in the interface operation (i.e., undergoes some logic transitions). These data structures

contain properties of the signals such as direction and electrical parameters (e.g.,

open-collector). Periodic and aperiodic signals are separated - only the circuitry for the

aperiodic signals will be synthesized with the Suture algorithm. Synchronicity constraints are

kept with the aperiodic signal data structure and are not represented in the graph itself.

Data structures are also created for each of the segments of the Waves timing diagram. These

data structures will be used to construct control logic for the generation of conditional and

looping events. Section 5.5 describes the details of the framework for applying the Suture

algorithm in the presence of these conditional and looping constructs.

Generating the graph structure is straightforward. Each event in the diagram is translated

into a node in the graph. Pointers are maintained to the event's signal and the diagram

segment during which the event occurs. The remaining three types of timing constraints

either add arcs to the graph or group nodes into super-nodes. Again, the fourth type of timing

constraint, the synchronicity constraint, is not represented in the graph.

Min/max timing constraints are the simplest to handle. The contraint creates a timing

constraint arc from the earlier event to the later event. Ordering arcs are similarly created

from the explicit ordering constraints of the diagram. However, ordering arcs must also be

created for the implicit ordering constraints among events on the same signal wire.

Simultaneity constraints, rather than being translated into arcs, cause their nodes to be

grouped into a super-node. The same logic will be used to generate all the events grouped into

a super-node and must ensure that they all occur within the maximum time specified by the

constraint.

This procedure creates a graph for each of the diagrams associated with a transducer

specification. The new data structures derived from the Waves diagram include all the

information required by the synthesis algorithms. What is lost are the details of the graphical

presentation of the events in the form of a timing diagram.

92 5 -Janus

Merge Points 5.2.1

In many cases, more than one diagram is needed for the specification of an interface operation.
Diagram combination is achieved through the use of merge labels attached to events in the
diagram (see section 3.3.3). This mechanism permits the arbitrary combination of diagrams
according to a co-routine model of parallelism and also allows the expression of constraints
that cross diagram boundaries.

In translating a collection of diagrams into a single graph, each diagram is first translated
separately. Once this is done, all the nodes in the entire collection of diagrams that have
attached merge point labels are collected. The nodes (or super-nodes) with identical merge
point labels are grouped into super-nodes. After merging, any duplicate nodes within a
super-node are destroyed (two nodes are duplicates if they represent identical transitions on
the same signal). Nodes with ordering point labels cause an ordering arc to be added to the
graph. The arc is directed from the node with the identically labelled merge point to the node
with the ordering point label. The restrictions on the ways labeled points can be merged or
ordered are described in Appendix C.

Some diagram events are only place holders for constraints (see section 3.3.3). A constraint
between events in two diagrams may be expressed by duplicating one of the events in the other
diagram, attaching the constraint to it, and then marking it as not being a part of the event
sequence depicted in its diagram (i.e., inactive) and labe.ling it with a merge label identical to
that of the corresponding event in the other diagram. When the two diagrams are combined,
the place holder node is merged with the original in a super-node to which all the constraints
are transferred. The place holder nodes and any unmerged inactive nodes can then be
removed from the data structure.

After merging, the structure of the graphs may have been drastically altered. The specifier of
the interface must be very careful in the placement of these labels. One can imagine that
incorrectly placed merge points can easily result in inconsistent event sequences or cyclic
graphs. A more probable consequence is that some timing constraints cannot be satisfied after
merging two event sequences. Within a diagram, the Waves editor's interactive constraint
checking capabilities (see section A.4) ensure that a consistent placement of events is possible
(i.e., a diagram drawn without constraint violations). However, when different diagrams are
merged this property no longer holds.

Intervals of Occurrence 5.2.2

To verify that a graph has a consistent set of timing constraints, it is necessary to obtain an
interval of occurrence for each node of the graph. An interval of occurrence is a time period
during which the event represented by the node may occur relative to a fixed node (i.e., one
with a fixed zero-width interval) (see Figure 5.4). When determining whether the constraints

Generation of the Event Graphs- 5.2 93

are consistent the algorithm is run with the start node of the operation as the fixed node. If

any node has an empty interval then an inconsistent set of constraints exists. The events

corresponding to these nodes indicate where corrections are to be made in the specification.

4----=====A1 - A2

-----81 .. ----------c1 .c2

---82

.c3
----c4

-----~=======~01 02

Figure 5.4. An example of intervals of occurrence. Each node is represented by a line

segment proportional in size to its interval of occurrence. Nodes with the same letter

occur on the same signal wire. In this example, the fixed node is C2. The events

represented by nodes Al and A2 will definitely occur before the event of C2. B2, C3, C4

and D2 will definitely occur later. Only C3 is precisely positioned in time relative to C2

(i.e., it has a zero-width interval of occurrence). Nothing can be said about the order of

occurrence ofBl and Dl relative to C2. The C nodes are ordered in time by the fact that

they occur on the same signal, however, the interval of occurrence algorithm merely

states that Cl will occur before or simultaneously with C2 and that C4 will occur after or

simultaneously with C3. Al and Cl may occur an arbitrary time before C2. Dl and D2

may occur any time after.

The algorithm used for determining intervals of occurrence is similar to those found in

compaction and spacing tools for integrated circuit layout [Burns86]. The first step is to detect

any cycles that may exist in the graph. Waves diagrams guarantee acyclic graphs; cyclic

behavior is represented via regular expressions on diagram segments (see section 3.3.2).

However, after merging two diagrams this need no longer be the case. The presence of a cycle

indicates a malformed merge that is inconsistent with the specification methodology and the

specification must be corrected before proceeding further.

Once an acyclic graph is obtained, intervals of occurrence can be computed. The algorithm

begins with one node being fixed and assigned a zero width interval of <0,0 > corresponding

to identical values for the earliest and latest possible times of occurrence. Every other node is

assigned the interval <NIL, NIL> corresponding to a lower bound of negative infinity and an

upper bound of positive infinity. A queue is used to hold all the nodes whose intervals have

been updated. The queue begins with only the starting node and as nodes are added, they are

sorted by earliest time of occurrence. The algorithm proceeds by removing a node from the

queue and traversing all its fan-in and fan-out arcs. The intervals of the neighboring nodes

are updated based on the arc type and its minimum or maximum values, if any (see Table 5.1).

If the interval of a neighboring node actually changes then it is added to the queue. This

process continues until the queue has been emptied.

94 5 -Janus

It is straightforward to determine the complexity of this algorithm. Each edge in the graph is

traversed at least once, yielding a lower bound of O(E) where E is the number of edges.

However, when a maximum constraint is encountered, the upper bound of an interval may

change. This change may propagate through the entire graph, causing each edge to be

traversed again. Therefore, the complexity of the algorithm is O(E*N maxJ. where Nmax is the

number of nodes with incident maximum timing constraints. Typically, there are few

maximum constraints. When they do occur, they also tend to be local in their effect (i.e., they

span nodes that are near each other in time). Therefore, the average running time of the

algorithm is closer to O(E) than O(E*NmaxJ.

ordering

minimum

maximum

arcfrom No

< earliest0 , NIL >

< earliest0 +min, NIL>

< NIL, latest0 +max >

arc to N0

< NIL, latest0 >

<NIL, latest0 - min>

< earliest0 - max, NIL>

< earliesti, latesti >~<max(earliesti, earliest), min(latesti, latest) >

Table 5.1. The time interval update for neighboring nodes Ni is computed from node N0

by using the table above. < earliesto, latest0 > and < earliesti, latesti > are the intervals

for the nodes before an update. A new interval for node Ni is determined by the type and

direction of the arcs connecting it to N0 . Its time interval is updated by taking the

maximum of the previous and new earliest value and the minimum of the previous and

new latest value.

Intervals of occurrence will be updated many times during the synthesis process. After being

used to check timing constraint consistency, this algorithm will be used to interconnect the

graphs for the two sides of the transducer (see section 5.2.3), to translate timing constraints

(see section 5.2.4), and to determine the possible logic levels of signals at different points in

time (see section 5.4.5).

Interconnection of Operation Graphs 5.2.3

The two graphs for each operation supported by the transducer must be interconnected by arcs

that span both graphs. The first arc to be added is simply used to start an event sequence on

one side when the corresponding sequence has started on the other side of the transducer. This

is achieved by adding an arc between the start nodes of the two graphs. The direction of the

arc is determined by the direction of the events represented in the start nodes. The arc will

Generation ofthe Event Graphs- 5.2 95

point from an input node to an output node, that is, once the start of an operation is signalled

by an input event then the operation on the other side can start with an output event from the

transducer. Operations with two input start nodes or two output start nodes are clearly

incompatible.

The other ordering arcs added to the graph are due to data dependencies. Data to be

transferred through the transducer must first be available as an input before it can be an

output of the transducer. The situation is identical for input data that is to be latched into

internal transducer state elements. Intervals of occurrence are used to determine the exact

placement of these arcs. An event must be identified that indicates when input data is valid.

This can be an event that occurs during the time that the data is valid or a precise time before.

Figure 5.5. The graphs for the two sides of the transducer are interconnected by adding

ordering arcs from the input start node of one graph to the output start node of the other

and from latching nodes of data inputs on one side to data outputs on the other. In this

figure, three ordering arcs cross from one graph to the other, two of them are data

dependency arcs (the data are labelled A and D, their latching nodes are La and Ld) and

one is a start node arc (start nodes are labelled S). Dark and light outlined nodes

represent output and input events, respectively.

The interval of occurrence algorithm is run once for each piece of input data that must be

transferred and begins with the node corresponding to where the data first becomes valid as

the fixed node with a < 0,0 > interval. After the algorithm has completed, the data signalling

nodes can be identified. If the node occurs after the data is asserted, then it can be used to

latch the data when it becomes valid. This latching node will become the tail of an ordering

arc whose head points to the output node on the other graph where the data must be output by

the transducer. A minimum timing constraints arc whose value is equal to the latch setup

time is added in parallel to the ordering arc. If a node that occurs before the data becomes

valid can be used, then the minimum timing constraint arc must reflect the extra time that the

signal must be delayed before it can be used to latch the data. This prevents the transducer

96 5 -Janus

from attempting to output the data until after it has become valid on its input. A minimum

timing constraint may also be added to ensure that the data will be available on the input long

enough to be latched. The arc extends from the event used to latch the data to an output event

that can delay deassertion of the data. Currently, Janus is restricted to latching events that

are in the same segment as the data event, the most common case in interface specifications.

Adding these extra arcs to the graph can, as in the case of merge points, cause an inconsistency

in the timing constraints. An example of an inconsistency is when an interface requires two

pieces of data to be produced by the transducer in a specific amount of time but the other

interface supplying the data requires a longer period of time to provide them. At this point in

the preparation of the event graph, the interval of occurrence algorithm must be run again to

verify that the data transfers across the transducer are consistent.

Problems of this type can sometimes be corrected by adding extra constraints to delay one

operation until all its outputs can be determined before they are needed. In the example

above, the operation that requires the outputs from the transducer cannot be started until

after the other interface has provided both data items. This adjustment is not always possible,

however. Some interfaces are simply incompatible and this information must be fed back to

the user along with the offending data and constraints. When it is possible to adjust the graph

it is done by performing the timing constraint translations outlined in the next section.

Timing Constraint Translations 5.2.4

Suture uses a greedy stategy to generate output events. Events are generated as quickly as

possible. If any minimum timing constraints need to be satisfied then a delay is added to the

path that generates the event. A problem arises when a configuration of nodes and arcs such

as that of Figure 5.6 exists in the graph. The problem is that the circuitry Suture designs will

generate event B immediately after event A. Then there will be no way to satisfy the

constraint between B and C. To rectify this problem, an extra minimum timing constraint arc

must be added between nodes A and B whose value is equal to the difference in the lower

bounds of their time intervals. In the case of Figure 5.6, this is a 200 minimum constraint.

These cases can be found by determining time intervals for the nodes while ignoring

maximum timing constraints. A scan of all the maximum timing constraints will identify

those that would alter the lower bound of the time interval of their tail nodes. In Figure 5.6

this is the 100 maximum constraint between nodes B and C. The tail nodes of these

constraints (e.g., node B) are the ones for which the Suture algorithm is inadequate. A

minimum constraint arc is added from the node (node A) that sets the lower bound of the head

node of the maximum constraint arc (node C) to the tail node of the arc (node B).

Generation of the Event Graphs- 5.2
97

< 0,0 >
300m in

< 200, NIL>

< 300, NIL>

100min &
100max

Figure 5.6. A set of nodes that requires a timing constraint correction due to the Suture

algorithm's greedy synthesis strategy. Node B must have a minimum timing constraint

arc of 200 added between it and Node A. Otherwise, Suture will generate Bas early as

possible after A and will not be able to satisfy the constraints on C that require it to be a

minimum of 300 after A and exactly 100 after B.

This configuration of nodes and constraints can arise not only from the specification but also

from the addition of data dependency arcs to the graphs. For example, there may be an event

that must occur a specific amount of time before the transducer outputs some data. These

constraints are translated at the same time as specification constraints rather than by

complicating the process of interconnecting the graphs.

Compression of Synchronous Events 5.2.5

Synchronous signals are different from asynchronous signals in that their logic level at the

time a clock edge occurs is important rather than transitions in logic levels. However, Suture

constructs circuitry to generate events, not levels. These two ways of looking at things are

usually compatible except when there are no timing constraints to separate two consecutive

events on a synchronous signal. This is the situation depicted in Figure 5.7. The third event

on the top trace is not constrained to occur one cycle later than the second. It could, in fact,

occur at the same time as the second event, meeting its implicit ordering constraint. This is

shown in the bottom trace of the figure. Suture must be able to synthesize circuitry that

compresses synchronous events in order to generate the most efficient circuitry possible. If

not, a cycle is wasted generating an unnecessary event, namely, the second one of the top

trace.

Of course, these events can only be compressed if they are not used to directly cause another

event. For example, if an ordering constraint emanated from the second event of Figure 5.7,

then it could not be compressed. This is because another event would be awaiting its

occurrence so that it could fire. To determine which synchronous events can be compressed,

the time intervals of occurrence are again pressed into service. Any output event on a

synchronous signal with no emanating ordering arcs whose following event is also an output

98 5 -Janus

event and has an identical lower bound for its time interval can be compressed. These events

may be single nodes or super-nodes and are marked as compressible for Suture.

1+-(1 @CIOCk>--*-(1 @CiockH

E, E23 E"

Figure 5. 7. A specification of synchronous events that can actually overlap. The top

trace shows the original specification, the bottom trace shows a valid implementation

that meets the constraints. Note that there is no minimum constraint between the

second and third events in the top trace (E2 and E3). The appearance in the lower trace is

that two events have been eliminated. The glitch (E23) is for illustrative purposes only.

An event graph can be annotated so that Suture can generate these synchronous event

sequences. It must be capable of doing this, otherwise it would generate circuitry that

wastes an extra cycle in generating the two compressible events.

E3enable _ __r--....._ ,___
5----~

E2enable _ _r---......
s >----1

E3enabl e ----~

E2enable s

D-FF

D-FF

D-FF

D-FF

Cause E2
~--(to S orR input

of output latch)

Cause E3
t--- (to S orR input

of output latch)

Cause E2
t--- (to S orR input

of output latch)

Cause E3
~--(to S orR input

of output latch)

Figure 5.8. Example of the changes in template logic required to compress synchronous

events. Above the dashed line is the circuit that would be used for the specification of

Figure 5.7 if the events were not to be compressed, below are the modifications that make

compression possible. Basically, E2 is generated only if it is not possible to go to E3

directly (i.e., E3 is not enabled) and E3 is generated in the normal manner as well as ifE2

is enabled (implemented by the OR gate).

Generation of the Event Graphs- 5.2 99

Suture actually generates all the events and compresses them by simply allowing two (or

more) to happen at the same clock edge. This must be done so that if an event is delayed, the

event that it would have compressed still occurs. This would be the case in Figure 5.7 if the

third event were delayed a cycle waiting for an input, the second event would still have to

occur to meet the one cycle constraint between the first and second events. If this is not the

case (e.g., the third event cannot be delayed by any other events), then the compressable event

can be completely eliminated after its constraints are translated (see section 5.2. 7).

The changes to the synthesized circuitry are all to the inputs of the template AND gate (see

Figure 5.8). For the case of Figure 5.8 without compression, the second event (E2) is generated

by a condition E2enable (determined from its incident ordering arcs) ANDed with the value of

the signal (S) at the time the event is to occur. The third event (Ej) is generated by a similar

AND gate with output E3enable ANDed with the complement of S. With compression, the

enabling conditions for E2 are changed to E2enable ANDed with S and the complement of

E3enable. For E3 they become E3enable ANDed with the OR of S complemented and

E2enable.

Splitting of Signals 5.2.6

Another set of graph transformations split tri-stated and bidirectional signals. A signal that

includes a tri-state level anywhere along its trace, or is viewed both as an input and output at

different times, is split into three: one to carry the logic value of the signal when it is viewed as

an output, one to carry the logic value of the signal when it is viewed as an input, and a third

that determines when the output driver is enabled. A bidirectional signal must have its driver

disabled when it is being used as an input. A special case exists for open-collector signals

where the driver can be disabled by a logic 1 output value. Therefore, open-collector signals

are split into only two separate signal wires (output and input).

Signal ·~ ~·

Output '-':::_,_:::'"':::_,_::: ... \, ---~/

Ena.ble /

Input :.: .. ·.:.: .. · .. ~ ;
.. -······················:,

-~ :· .. -: .. : .. :.-: .. :

Figure 5.9. A tri-statable or bidirectional signal is split into three: one to carry the output

value, one to carry the input value, and one to enable the output. In this example, six

extraneous events are generated: three on the output signal, two on the enable signal,

and one on the input signal (see section 5.2. 7).

100 5 -Janus

An example of how a signal is split is shown in Figure 5.9. Each event is split into three events
that are bound together by a simultaneity constraint into a super-node. Some don't care

events are created because it is irrelevant what the output logic value of a signal is when it is
tri-stated or being viewed as an input. Computed signals are also split, their output signal has

no events, however, its logic value is determined by the Boolean and latching expressions in its
specification.

Extraneous Events 5.2.7

There are three types of extraneous events. The first type is a don't care event introduced by
the designer in a Waves diagram or generated by the splitting of a signal (see Figure 5.9). The

second type is an event that would change the logic level of a signal to the same level that was
on the signal prior to the event occurring. This type can only be introduced by signal splitting.

The third type occurs only when the first event on a signal would change the logic state of the
signal to its quiescent level. This last type is caused by signal splitting or by signals that have

different initial transitions in different operations (e.g., if a signal changes from tri-state to
logic 0 in one operation and tri-state to logic 1 in another, the logic 0 transition will be
extraneous if the signal's quiescent level is set to logic 0).

A quiescent level is determined for all the signals of the transducer. This is one of the few steps
that requires information from the specifications of all the operations. Since Janus imposes
the restriction of atomic non-overlapped operations, all signal traces in all operations must
start and end with compatible levels. A compatible set of levels is one for which a logic value
exists that satisfies all the logical constraints (e.g., logic 0 is acceptable for signals whose

traces start or end with valid, don't care, or logic 0).

Extraneous events are detected with a single pass over the event graph after signals have been

split and quiescent levels have been determined for each signal. They are marked as
extraneous and are ignored by the synthesis steps of the Suture algorithm. No circuitry will
be synthesized for these events. They are not removed from the graph because some
constraints may propagate through these events.

Generation of the Event Graphs- 5.2 101

Synthesis of the Data Path Circuitry 5.3

Data can be transferred through the transducer from one interface to the other or loaded into

or read out of internal state elements. Furthermore, the transfers may occur through

dedicated wires or multiplexed wires that carry more than one data item. These wires may

also be required to carry specific logic levels during the course of an interface operation. The

circuit elements required to implement the data paths include inputloutput pads, latches,

multiplexers, and their control logic.

Data Transfers Through the Transducer 5.3.1

All data transfers, whether they use internal state of the transducer or not, are treated in the

same way during synthesis. Each input data item must have an associated latching condition.

These conditions are derived from the tail nodes of the data dependency arcs added to the

graph.

The next step in synthesizing the data path of the transducer is determining whether or not

the data in each transfer needs to be latched. This is a trivial process that involves ordering

the assertion and deassertion nodes of the data. Again, the time interval of occurrence is used

to place the nodes on a time axis. If the two output nodes (assertion and deassertion) always

occur between the two input nodes then there is no need for a latch (i.e., the input data is

always valid when it is needed for output). Otherwise, a latch is generated and controlled by

the latching condition found during the data dependency arc generation step (see section

5.2.3).

Multiplexed Data Transfer Paths 5.3.2

Signals wires that carry more than one data item must be split into separate wires, one for

each of the values they may carry. A multiplexer is used to recombine the separate signals

onto a single wire. Figure 5.10 shows an example of a signal that carries two data items as

well as specific logic levels that require a line of their own. The events on the various signals

are generated in exactly the same manner as for tri-statable signals. A pair of events are

generated to correspond to data assertion and deassertion.

If a signal only carries data items and does not require specific logic values then there will be

no events on the corresponding Value signal and no circuitry will be generated for that

purpose. If this is the case, one of the control inputs of the multiplexer can be eliminated.

102 5- Janus

Signal ----~~ ____ D_a_t_a_1 __ ~\ ____ ~/r----~\==:Jo~a~t~ag2:=:})-----

Enable

Value \:::::;:;:: :;:;:;:;:;:::::::;:::;:;:::::::::::;:;:;:::::

Data1sel

Data2sel

Value -----tOO Enable

Data1 ----~10~---------1 ~----Signal

Datal 01

Figure 5.10. A multiplexer is required when a signal wire carries more than one data

value during the course of an operation. In this case, SIGNAL carries Datal and Data2

as well as asserting specific logic values at other times. To handle this case, a three input

multiplexer is required. One input is for specific data values and the other two are for the

data to be transferred. An enable signal is also generated so that the signal wire can be

tri-stated.

Synthesis ofthe Data Path Circuitry- 5.3 103

Synthesis of the Control Circuitry 5.4

The circuit framework within which Suture synthesizes the skeletal circuit consists of one

set-reset-dominant (S-R*) latch for each output signal. Signals that have a quiescent level of

logic 0 (active high) use the output of the latch directly while those with logic 1 (active low) use

an inverter on the latch output. This implies that the templates that generate falling events

on active low signals should be tied to the set input while those for rising events to the reset

input.

There is another latch in the transducer circuit for each interface operation. It is used to keep

the output signal S-R* latches reset (i.e., the outputs in their quiescent state) when the

operation is not in progress. The operation latch is set by the starting event of the operation (or

the event that causes the starting event, if the starting event is an output) and reset by the

ending event of the operation. Figure 5.11 shows the implementation for an output signal

latch.

Operation
Enable

»-.,_ ____ Output (if active high)

.:><>--- Output (if active low)

Figure 5.11. The implementation of an output signal latch. An extra reset input is used

to force the output to its quiescent state when no operation is in progress. If a signal is

used for more than one operation its operation enable signals will be ORed together

during the optimization steps.

Synthesis of the Skeletal Circuit 5.4.1

The latches for each output signal and operation set the framework within which Suture will

synthesize the control circuitry of the transducer. At this point, the event graphs contain only

control events and inpuUoutput pads have been assigned to all the transducer signals. The

algorithm stitches together the output signal latches with templates chosen on the basis of the

incident arcs to each output node. This process and the templates are described in section

4.3.1.

104 5 -Janus

Once the templates have been chosen, Suture must ensure that all the timing constraints are

met and no race conditions occur. Before this can be done, intervals of occurrence for each of

the nodes must again be obtained. This time, however, the algorithm can use the expected

delay of the actual circuit elements to arrive at more accurate time intervals for the output

nodes. It must still use the original constraints for the input nodes.

This information can be used to mark each node with the logic values of the other signals just

prior to the occurrence of the events it represents. A step required by the race elimination

algorithm (see section 5.4.3). Node marking is a two step process. A depth-first traversal of

the graph (using only the ordering arcs) is performed from the first event of each signal. Nodes

on a path between any two consecutive nodes of the signal can be marked with a logic value for

the signal. Actually, a pointer to the corresponding node on the signal is stored (see section

5.4.3). Nodes that do not fall on such a path cannot be marked for the signal currently being

processed.

After all the signals have been processed, the interval of occurrence algorithm is run for each

node that has at least one signal whose logic level could not be determined by the depth-first

search. The node can be marked if it can be placed at an unambiguous point in time relative to

the events on the unmarked signals. If an ambiguity is present then there is no way to mark

the node with a definite logic value.

The complexity of the synthesis algorithm is dominated by the number of times the interval of

occurrence algorithm must be run. This algorithm is used for many purposes and may be used

as many as N times, where N is the number of nodes in the event graph. With an average

complexity of O(E*NmaxJ, this makes the total complexity of the synthesis process

O(E*N*NmaxJ. In the worst case, withE equal to N2 and Nmax equal toN the complexity

could be 0(N4). However, in a more typical case for interface specifications, E is equal to 2*N

and Nmax is a small fraction of the total N. This makes the average expected complexity

0(N2).

Local Corrections for Constraint Satisfaction 5.4.2

Local modifications must be made to the circuit to correct for timing constraints that are not

met and to eliminate race conditions. These modifications are local in that they only modify a

small part of the circuit, possibly removing some circuitry and adding newly synthesized logic.

The overall structure of the skeletal circuit remains intact.

Timing constraints are straightforward. Violations can be identified by using the time

intervals computed from the actual circuitry rather than the constraints for each of the output

nodes. There are two cases of minimum timing constraint violations each of which is resolved

by adding delay elements. The first case occurs when there is also an ordering arc between the

two nodes. A delay element is added to the corresponding input of the circuit template used to

implement the too early node. The amount of the delay is equal to the error computed from the

Synthesis ofthe Control Circuitry- 5.4 105

interval of occurrence. The second case occurs when there is no parallel ordering arc. In this

case, an extra input is added to the template and the delay element is added as before.

Maximum timing constraint violations are quite different. The circuitry used to generate an

event was simply too slow. The priority given to performance in the Suture algorithm ensures

that events are generated as quickly as possible. The timing constraint translations

performed during the process of preparing the event graph (see sectio 5.2.4) guarantee that

events do not occur too early when they have a maximum timing constraint to a later event. A

specific correction can be made for certain synchronous events, that is, those caused by other

events synchronous to the same clock. In this case, there may be enough time to generate the

event directly, without going through the D-type flip-flop of the template. However, this is

only possible if the setup and hold times of the synchronicity constraint can still be met.

Other types of maximum constraint violations are referred to the designer who will either

improve the circuit library by providing faster circuit elements or relax the timing constraint

that is violated. However, a maximum timing constraint violation may not always be an error

but may be corrected by adding more timing constraints on input events. This more complete

specification of time intervals for these events may enable Suture to guarantee that the

constraint will not be violated. An example of this is shown in Figure 12.

1000max 1000max

-- _ 900max

Figure 5.12. The addition of timing constraints can improve checking of maximum

timing constraint violations. In the graph on the left, no assumption can be made about

when the event of node A2 will occur. Therefore, the lOOOmax constraint will be flagged

as possibly violated (as would be the case if B occurred late). If more information is

known about the inputs to the transducer (i.e., the interval of occurrence of input events

can be more completely specified), then Suture may be able to determine that the

constraint will be satisfied. In the graph on the right, as long as it does not take longer

than 100 time units to generate A2 after B occurs, the constraint will be met.

Local Corrections for Race Elimination 5.4.3

The elimination of race conditions also relies heavily on the time intervals of occurrence

algorithm. Again, there are three different types of race conditions and the corrections for

each are described below. All three may require the addition of a set-reset latch to trap an

106 5- Janus

event. The latches are reset by the same operation latch output signal as the output signal

latches. The three types of race conditions are detected and corrected in the order in which

they are described below.

The first type of race conditions occurs when a synchronizer misses an input event because

another event on the same signal occurs too close to it in time. This race condition can be

detected by running the time interval of occurrence algorithm on every event that is

synchronized. If the following event on the same signal is not constrained to occur at least one

clock cycle later, then a set-reset latch is added to trap the event.

The second type of race condition occurs when an enabling condition for an event never

actually occurs. This happens when two events are ANDed together in a template and another

event occurs on one of the signals too quickly. This prevents the Boolean condition from ever

being satisfied. The first event must be trapped and saved.

The test for this condition entails partially ordering the immediate predecessor nodes (the tail

nodes of all the ordering arcs) of the node in question and the immediate successors (the head

nodes of the implicit ordering arcs) of these nodes. The partial ordering is achieved by using

ordering arcs and intervals of occurrence. If there does not exist a cut through the partial

ordering where the condition is true then a potential race is present. As with the previous

case, the fix here is to add a latch to the signals whose events are too closely spaced and to use

the output of the latch as input to the AND gate of the template rather than the signal itself.

The last type of race occurs when a Boolean condition that causes an event to fire occurs more

than once during the course of an operation (i.e., at other nodes). It may occur too early, before

the event is supposed to fire, or too late, after the next event on the signal has already occurred

and changed the signal to a different logic value. In either case, an erroneous event is

generated.

This type of race condition can also be eliminated by adding extra inputs to the AND gates of

the templates. The simplest solution is to find another signal (or signals) that has a different

logic value for the nodes where the condition is true. These discriminating signals are

determined by the signal markings on the nodes. A signal or signals must be selected so that

the new Boolean condition (i.e., the ANDing of the previous condition with the discriminating

signal) separates the nodes into two sets: a true set and a false set. The true set, must, of

course, contain the node under consideration (referred to as the target node). However, it may

also contain nodes that will occur before another event occurs on the same signal as the target

node. This is simply a check that these nodes are marked with the target node in their signal

value markings. The correction is simply to add the discriminating signal as an input to the

AND gates of the templates of the true nodes, and its complement in the case of the false nodes.

It may not always be possible to find a discriminating signal. One may have to be constructed.

This is done by identifying a node that will partition the nodes for the which the original

Boolean condition was true into acceptable true and false sets. The event represented by the

node is used to set a latch that records its occurrence. The newly created signals, the output of

the latch and its complement, are then added as inputs to the AND gates of the templates. In

Synthesis of the Control Circuitry- 5.4
107

the worst case, this can result in circuitry that will actually have a latch for every event on

each signal.

The races are corrected in this order because the correction of the latter steps may need to be

applied to the modified circuits resulting from the previous steps. Also, after each new latched

event is created, the nodes of the graph are marked for this new signal. The result of the

correction can potentially be used to correct other race conditions.

108 5 -Janus

Extensions for Conditionals and Loops 5.5

Simple extensions to Janus and Suture allow the algorithms to comfortably handle

specifications with looping and conditional event sequences. The most important point is that

diagram segments representing these constructs are treated as independent diagrams. In fact,

many of the interval of occurrence calculations are performed independently on each segment.

In generating event graphs, special care must be exercised while merging when conditional

and looping segments are present. Any merge points with another diagram must be placed so

the diagrams are combined along a single path of control. That is, the graph that results after

the merge must have a single root for all possible conditional executions. An example of a

malformed merge is when two merge points are placed in mutually exclusive diagram

segments. Checks exist for this and other inconsistent specifications (see Appendix C).

For conditional event sequences, a set of mutually exclusive latches, one for each alternative

sequence, is created. When a segment enabling event occurs, a latch is set. Its output is an

input to the AND gate of all the templates that generate events within the enabled segment.

Setting the latch also disables the latches for the alternative paths. Enabling events that

include timing constraints (see section 3.3.2) use the same circuitry except that the input to

the latch is delayed by the value of the timing constraint.

Looping event sequences require a counter in addition to a latch. The counter is used to keep

track of the current iteration of the loop. It is incremented every time the loop enabling event

occurs. Its output is used, as with the latches for conditional sequences, as input to the

template AND gates. Later combinational logic optimizations will simplify these logic

networks. The latches and counters are reset by the same operation enable signal used for the

output signal latches.

The output signals of the counter are also available as internal signals of the transducer. To

specify conditional behavior based on a loop iteration, the specification need only refer to the

LoopCnt state bits. The number of bits is based on the maximum iterations of the loop and is

currently limited to 16. Some loops may never require the outputs of their loop counter. For

example, in the indefinitely looping segment of Figure 3.8, there is no need for a counter and

the logic optimization subroutine can eliminate it from the final circuit since its outputs will

be unused.

A condition imposed on diagram segments is that their enabling event be the first event in the

segment to occur. This can be verified with time intervals of occurrence. The reason for this

requirement is that the synthesis framework used by Suture, the latches and counters used to

control the firing of events, relies on this property.

Extensions for Conditionals and loops- 5. 5 109

Logic Optimization 5.6

The last part of the synthesis procedure is the optimization of the circuitry generated by the

Suture algorithm. The objective is to achieve high-performance, not compact circuitry. The

circuits Suture constructs use simple elements so that local corrections as described in sections

5.4.2 and 5.4.3 can be made easily. However, the flip-flops and synchronizers used in the

templates can be combined into a smaller circuit. Furthermore, Janus generates a completely

separate circuit for every interface operation. One would expect that many of these operations

are quite similar and could easily share circuitry.

The sequential logic optimizations needed to combine the templates are the subject of this

section. Applying them to the circuits generated by Janus creates many multi-level logic

networks. This logic can be further optimized by using standard combinational logic

minimization techniques [Brayton87]. These methods extract common sub-expressions from

the Boolean equations to minimize the number of gates in the resulting circuitry.

Merging Across Operations 5.6.1

The different circuits Janus generates for each interface operation can be combined by a very

simple recursive procedure. Each output signal's S-R* latches are combined into a single latch

with multiple set and reset inputs. These inputs are themselves further combined if they are

outputs of the same template type. This is often the case for synchronous signals. All the

D-type flip-flops are merged into a single flip-flop with an OR gate whose input is the output of

the Al'l'D gates of the templates being combined. This combination is also perfomed for mixed

flip-flop and synchronizer templates.

Circuit elements can also be merged by looking at the input signals of the transducer. Some

signals may be repeatedly delayed along different paths. In this case, the delay elements can

be merged and a single delay path used to generate all delayed versions of the signal. A

similar situation exists for signals that are synchronized more than once. It is important to

make sure that there is only one synchronizer on any one input signal so that inconsistent

states do not arise (i.e., the two synchronizer deciding on two different output states for the

same input). The circuit is modified to fanout the output of the single synchronizer to where it

is required and eliminate the extras.

110 5- Janus

Sequential Logic Optimizations 5.6.2

The last set of optimizations involves the transformation of sequential logic. For example, if a

latch has set and reset inputs of the form sX and r X then the latch can be replaced by a gated

latch with control signal X and inputs s an r. This transformation was applied in optimizing

the circuit ofFigure 4.15.

Two other possible optimizations are shown in Figure 4.9. The S-R* latches are, in some

special cases, replaced by simpler circuitry. For example, a clocked latch is replaced by a

D-type clocked latch with input equal to (Q+S)R', where Q is the output of the latch and Sand

Rare its original inputs. Larger scale optimizations are possible when the inputs to an output

signal latch are both output of flip-flops. In this case, the two flip-flops and latch are coalesced

into a single flip-flop with a slightly more complex input equation.

Currently, only these three optimizations are implemented since the circuit library only

contains these types of latches and flip-flops. After these optimizations are completed, the

circuit is output by Janus and used as input to the combinational logic optimization and

implementation tools that will realize the circuit in a specific implementation technology.

Logic Optimization- 5.6
111

<This page intentionally left blank.>

112 5- Janus

CONCLUSION

113

<This page intentionally left blank. >

114

Conclusions and Contributions 6

Circuit interfaces are an important design abstraction. I have presented an interface

specification methodology that can serve as the foundation for a new set of CAD tools that

address interface issues. An interactive editor, called Waves, that supports this methodology

has been implemented. To demonstrate the power of the abstraction, I have developed a new

control logic synthesis method, called Suture, and applied it to the automatic synthesis of

interface transducer logic in a tool called Janus. The designs generated by Janus are

comparable in both size and performace to those generated by experienced designers.

This, the concluding chapter of this dissertation, is divided into two sections. The first section

summarizes the contributions of the work presented in this dissertation, and the second

section provides some ideas for future work in both interface specification and circuit

synthesis.

115

Summary of Contributions 6.1

This dissertation makes contributions to two areas of computer-aided design- specification

and synthesis. I have developed a new approach to an important problem in each of these

areas and applied it to practical examples. This summary, like the dissertation as a whole, is

broken into two sections corresponding to these areas.

Interface Specification 6.1.1

In the area of specification, I have presented a new method for digital circuit interface

specification that is based on the familiar timing diagram. As argued in Chapter 2, timing

diagrams are an ideal method for interface specification. There are four reasons for this: (1)

they are familiar to potential users, (2) they properly emphasize interface constraints rather

than the internal circuit's realization, (3) they are a concise method of description, and (4) they

can be extended to represent conditional and looping behaviors, combined to form larger

specifications, and can describe arbitrary hardware via procedural annotations.

I have implemented an interactive editor to support this methodology. Waves not only

supports the editing of timing diagrams but also performs interactive constraint checking for

the user. An interface is specified by a collection of Waves timing diagrams arranged in sets,

one set for each operation supported by the interface. Appendix B demonstrates that Waves

can be used to represent the interface behavior of a variety of interfaces including commercial

system busses, microprocessors, memories, and custom applications.

An abstract specification of circuit interfaces enables the development of a new class of CAD

tools that deal with interface design and testing issues. The Waves editor provides a

convenient way to generate data structures to represent these specifications. Their

application in the automatic synthesis of interface transducers is the subject of the second part

of this dissertation.

116 6- Conclusions and Contributions

In summary, the contributions of this dissertation in the area of interface specification are:

• an abstraction for circuit interfaces that emphasizes interface constraints while

remaining independent of the underlying circuit realization, forming a foundation

for a new class of CAD tools that deal with interface issues;

• a new, mostly-graphical, interface specification methodology based on a

formalization of the timing diagram; and

• an interactive editor, called Waves, that supports this specification methodology and

can be used to generate interface specification data structures for these new CAD

applications.

Transducer Synthesis 6.1.2

One of the applications made possible by the interface abstraction supported by Waves is the

automatic synthesis of interface transducers. An interface transducer is the glue logic that

connects two interfaces together. It may include both synchronous and asynchronous

elements and must respect the timing constraints imposed by both interfaces. A transducer is

required whenever a new custom chip is to be integrated into a system backplane or whenever

two circuit blocks are to be connected.

I have presented a new synthesis method, called Suture, to deal with this task. The input to

Suture is in the form of event graphs, derived from Waves diagrams, where nodes correspond to

events and arcs to timing constraints. Events may be either synchornous or asynchronous.

Suture performs the synthesis by traversing the event graph and constructing a skeletal

circuit from a set of simple templates. Local modifications to this circuit correct for timing

constraint violations and race conditions. I am not aware of any other synthesis method that

supports both synchronous and asynchronous signals with timing constraints on their events.

When the input to Suture is restricted to being purely synchronous or purely asynchronous,

with no timing constraints, Suture achieves results comparable to the more specialized

methods that exist for these classes of circuits.

The Suture algorithm forms the core of Janus, an automatic synthesis tool for interface

transducers. Janus interconnects the event graphs of two interfaces based on the data

transfers through the transducer and combines and optimizes the circuitry generated by

Suture for each supported interface operation. The details of three practical transducer

examples synthesized by Janus are provided in Appendix D. In all three cases, Janus yields

results comparable in both size and performance to those achieved by experienced designers.

Summary of Contributions- 6.1
117

In summary, the contributions of this dissertation in the area of circuit synthesis are:

118

• a new control logic synthesis method, called Suture, that can be applied to

specifications that include minimum and maximum timing constraints and both

synchronous and asynchronous signals;

• a general synthesis method that yields results comparable to those of more

specialized methods;

• a framework for synthesis and optimization based on a process employed by human

designers; namely, to generate a skeletal design that is later locally modified to

correct for deficiencies; and

• an interface transducer synthesis tool, called Janus, that generates the logic design

of a transducer from Waves interface specifications and generates designs that are

comparable in both size and performance to those generated by experienced

designers.

6- Cone! usions and Contributions

Directions for Future Research 6.2

The work described in this dissertation has many aspects that should provide fertile ground for

future research. The specification methods and synthesis algorithms presented here have a

wide applicability but can certainly be extended to cover a larger class of problems. In this

section, I will present some ideas for future extensions and new application domains.

Of course, the implementations of Waves and Janus can stand some polishing and should be

ported to a more standard environment (e.g., workstations that run UNIX, Common Lisp, and

the X window system). Also, a larger collection of examples needs to be gathered to further

validate the ideas that these tools incorporate.

Interface Specification 6.2.1

Although a graphical interface specification method is more amenable to most designers, a

textual method is required if interface constraints are to be integrated with hardware

descriptions. A viable approach may be an annotation method similar to that of BSIIISPS

where the timing information, rather then being declared in the text, is placed in an

accompanying timing diagram with cross-pointers between the text and the diagram. This

type of facility may provide the best of both worlds, a graphical specification for timing

constraints and a program specification for the related hardware components. However, major

difficulties must first be resolved in ensuring that the two interconnected pieces of information

-interface constraints and circuit functionality- are kept consistent.

A textual representation for interface constraints is also required if an interface view of a cell

is to become a first-class design object like the more familiar internal structural views (e.g.,

layout, transistor, logic, etc.). It would be desirable to include interface information for a

circuit block in an interchange language such as EDIF (Electronic Design Interchange

Format) or a CAD database such as OCT so that the entire CAD tool suite can manipulate the

information.

The graphical specification of cross-operation constraints requires further research so Janus'

restriction of only atomic non-overlapped interface operations can be removed. A possible

solution to this may be a meta-timing diagram editor that presents the user an abstraction of

timing diagrams that only permits constraints to be expressed between synchronization points

and hides the details of the rest of the diagram.

As interface specifications become part of the definition of every functional block, it will

become necessary to generate interface specifications automatically. Extracting interface

constraints from structural specifications is a difficult task, and there may not be enough

information in the structural view for this to always be possible. A partial solution may be to

Directions for Future Research- 6.2 1 19

extract only the obvious constraints and permit the user to further annotate the specification

in a verifiable way. Further in this vein, formal methods need to be developed that can

generate an interface specification for a composite circuit given the specifications for its

components (see section 2.3.2). Temporal logic is certainly promising in this area, however, an

improved logic for dealing with timing constraints must be developed. A logic where the size

of the specification does not increase exponentially with the number of constraints and is more

syntactically appealing to potential users, both CAD tool developers and circuit designers.

Application of Interface Specifications 6.2.2

The new circuit interface abstraction presented in this dissertation makes feasible many CAD

applications that were previously difficult or impossible. Some of these have already been

discussed in some detail in section 3.4 and include applications from documentation and

design to testing and evaluation. It serves to mention some of these again.

Documentation tools that use Waves interface specfication as indexes to an English

description of the interface are obviously feasible. It is certainly easier for a designer to use

diagrams for different interface operations as indices to a large specification document rather

than the one-dimensional and less-specific traditional index.

In design and evaluation, there is also a large potential for new tools. To continue the

discussion of the previous section, if formal methods are available to combine interface

specifications while a system is being assembled, then it should also be possible to check for

compatibility between interfaces and suggest ways of improving the match. This can be

further extended to the critique of interface designs and improved performance and

throughput estimation tools.

Obvious applications exist in the areas of simulation and testing. As described in section 3.4,

interesting algorithmic problems exist in generating parameterized input vectors that test the

full spectrum of acceptable interface behaviors rather than just one. Similarly, output vectors

should be validated against the specification rather than a fixed set of expected outputs.

Transducer Synthesis 6.2.3

The Suture algorithm for control logic synthesis can be applied to any event graph to generate

a fast static circuit implementation for the inputloutput behavior represented by the graph.

This includes conforming to timing constraints between the events. The most important

directions for future research are primarily in the generation of the event graphs for different

application domains and the optimizations that can be applied to the resulting circuitry.

120 6- Conclusions and Contributions

Methods must be developed for synthesizing transducers with overlapping operations.

Currently, the circuitry for one operation is synthesized independently from that of the other

operations and there is no framework for including cross-operation constraints.

Janus can synthesize only transducers with indentical width data paths on both interfaces.

Techniques for multiplexing data and for serial-parallel conversion need to be investigated.

This will require the generation of internal signals to control the multiplexers and shift

registers. The actual logic synthesis should fall into the class of specifications Suture can

handle. More generally, it should be possible to generate circuits that perform two 16-bit

operations on one interface for the corresponding 32-bit operation on another, possibly

modifying addresses between operations.

Other issues include the ability to specify functions that are not simple mappings of events

across the transducer. For example, a reset operation should reinitialize transducer circuitry

as well as being mapped to the other interface. Deadlock issues also need to be addressed -

independent operations may be pending on both interfaces of a transducer with neither able to

complete. It is obvious that a need exists for higher-level abstractions for interface functions

rather than the simple atomic operation model employed by Janus.

In the area of optimization, don't care information present in the interface specification should

be exploited. For example, the event following a don't care event on a signal wire can be placed

anywhere between the previous don't care event and its current position. The proper

placement of such events, by moving them so as to be simultaneous with other events in the

same time range, can result in the sharing of more circuitry by using it to generate more than

one event.

Lastly, the synchronous portion of a transducer design can be optimized if its state transition

table can be reconstructed. A new state assignment can result in a smaller number of state

flip-flops by encoding the state of the synchronous outputs rather than relying on a state-bit

for each output as is currently the case. There may be an especially large reduction if flip-flops

have to be used to delay some signals in order to meet constraints. The combinational logic

between the flip-flops may also be reduced due to the smaller number of states.

Directions for Future Research- 6.2
121

Summary 6.2.4

Research in the directions outlined above holds promise for further expanding the range of

specifiable behaviors and synthesizable circuits. However, some have a greater potential than

others. In my view these are:

122

• the development of formal methods for reasoning about interface constraints

together with hardware descriptions,

• extending the graphical methods for representing input/output behavior, hopefully

relying on existing paradigms such as timing diagrams, and

• the continued development of synthesis methods that formalize the ad hoc design

methods employed by experienced designers.

6- Cone I usions and Contributions

Closing Comments 6.3

This dissertation represents a step towards solving the problems of interface specification and

achieving the more general goal of high-level specification of digital circuits based on their

input/output behavior. In the area of synthesis, it makes an important contribution to the

synthesis of practical circuits, that is, circuits that must conform to external behavioral and

timing constraints.

The two implementation efforts, Waves and Janus, demonstrate that the research

contributions outlined above can be applied to practical problems. Furthermore, they

represent a substantial improvement over current methods, greatly expanding the range of

circuits for which behavior can be specified and a logic design automatically synthesized.

Closing Comments- 6.3 123

<This page intentionally left blank.>

124 6- Conclusions and Contributions

APPENDICES

125

<This page intentionally left blank.>

126

Waves Implementation A

Waves is an interactive editor for formalized timing diagrams. It is implemented in LOOPS,

an object-oriented programming extension to the Interlisp-D programming environment, on

Xerox 1109 workstations. Its user interface is based on decal windows, a new abstraction for

mouse-sensitive window regions. Waves uses the access-oriented programming of LOOPS to

implement incremental and interactive constraint checking.

This appendix is composed of eight sections. The first section is an introduction to the

implementation medium and discusses the advantages of Interlisp-D and LOOPS for user

interface programming. The second and third sections outline the data structures I developed

to help with this task. Section 4 explains the implementation of the constraint checking

provided by Waves. The flfth and sixth sections present the extensive editing facilities

provided to the user. The seventh section contains a description of the data structures (i.e.,

LOOPS objects) used in Waves and their interrelations. The appendix concludes with a section

on Waves portability issues.

127

Implementation Medium A.l

Waves is implemented in Interlisp-D, a single address space, multi-process, Lisp programming

environment running on Xerox 1109 Lisp workstations [Xerox86]. The general procedural

interface to window and mouse operations available in Interlisp-D provided the primary

impetus for using it to implement Waves. Waves relies heavily on LOOPS, a set of

multi-paradigm programming extensions to Interlisp-D [Bobrow83, Stefik86]. LOOPS adds

object-oriented, access-oriented, and rule-oriented programming paradigms to the procedural

paradigm already available in Inter lisp-D.

One feature oflnterlisp-D windows is that they do not require a corresponding user process to

implement their functionality. Any process can use any window and any window can signal

any process. This many-to-many mapping is different than most multi-address space

environments such as UNIX [Gettys86]. Mouse events in the Interlisp-D environment are

handled by a system MOUSE process that calls a different procedure for each type of event

that occurs (e.g., left button down, scroll bar event, etc.). The name of the procedure is

obtained from the appropriate field in that window's data structure. Windows are created with

default procedures, but their behavior can be changed by modifying the data structure to hold

different procedure names. Once the procedure is obtained it is called with a standard set of

arguments (e.g., a pointer to the window data structure) and evaluated within the context of

the system MOUSE process.

The single address space makes this straightforward model for windows possible. Procedures

evaluated under the MOUSE process can access the entire address space, therefore, there is no

need to associate a user process with a window and accept the context-switching overhead of

such schemes. The computation caused by the event ties up the MOUSE process and causes no

new events to be handled. A problem with this approach is that no new computations can

begin until after the event handling is completed. Long computations appear to freeze up the

system and other interactions with the user through mouse actions (e.g., pointing at graphic

objects) are not possible. Since Waves is a highly interactive editor that allows the user to

specify most of the arguments for its operations graphically, it was necessary to introduce a

lock to the data structure of each diagram. When an event occurs in a Waves diagram the first

step is to obtain the monitor lock for the diagram. A different operation (e.g., popping up a

different menu) or no operation at all may be performed if the lock is not available.

Most computations are much shorter than the few tenths of a second between

human-generated mouse events and do not freeze up the system. In these cases, Waves allows

the MOUSE process to be tied up and perform the computation. In cases where other user

interaction is required, Waves spawns a new MOUSE process to handle these interactions.

Interlisp-D processes coexist in a single address space, making it fairly inexpensive (i.e., the

cost equivalent of a few procedure calls) to spawn the process when required. Whenever one of

128 A-Waves Implementation

the MOUSE processes returns to its quiescent state and finds another copy running, it kills

itself.

Other useful features of Interlisp-D are the low-level graphics and user-interface routines

provided with the system. Lisp functions are available to perform bitblt, line drawing and

area-filling primitives. All the graphics routines are micro-coded and run much faster than

would be expectedofthe 1109 CPU.

Many user interaction routines are also included as a standard part of the system. These

include procedures for prompting the user for type-in in different screen windows and the

specification of stable and pop-up hierarchical menus. The menus also take advantage of the

single-address space and are capable of performing operations on any data structures present

in the environment. Lisp expressions are attached to menu items at the time the menu is

defined and are then evaluated with a standard set of dynamic bindings when the menu item

is selected by the mouse. This makes it straightforward to pop-up menus after specific mouse

events and execute different procedures based on the user selection.

Yet another feature of the Interlisp-D environment is the availability of LOOPS. LOOPS is a

highly integrated set of extensions to Inter lisp that provides the programmer with three more

programming paradigms besides the procedural paradigm of Interlisp.

object-oriented, data-driven, and rule-based programming paradigms.

programming is the only one of the four paradigms not utilized by Waves.

These are the

Rule-based

Waves is implemented primarily in the object-oriented style. Procedural methods are used to

tie the window and mouse operations to the message passing of LOOPS objects. An object

abstraction layer for Interlisp windows was provided by colleagues at Xerox PARC to

implement this connection [Lanning86]. The mechanism attaches special window and mouse

operation functions to an Interlisp window data structure. These functions, rather than

performing the operation directly, send a message to the LOOPS object that corresponds to the

window. A corresponding object method is defined for each operation and performs the same

operation previously performed directly by the window function. This extra level of

indirection allows Waves windows, and other window objects, to be implemented as

specializations of these simple windows.

Access-oriented, or data-driven, programming, the third and last paradigm used in Waves, is

exploited to implement the constraint checking capabilities of the editor (see section A.4)

[Bobrow83]. Data-driven programming is the dual of procedural programming. Rather than

procedural calls causing data to be read or written, accessing data causes a procedure to be

called. Two procedures are attached to the datum; one is called when the data is read and the

other when data is written. Trigger and data protection mechanisms can be easily

implemented using this mechanism.

Implementation Medium -A.1 129

Decal Windows A.2

The user interface to Waves is based upon a modeless interactive editing model. Diagram

display objects, including all signal names, events, levels, constraints, and segment specifiers

are mouse-sensitive. Each is implemented as a LOOPS object that is specialized to respond in

its own way to different mouse buttons. All Waves operations are implemented as messages to

the appropriate objects running under a copy of the Interlisp-D MOUSE process.

The underlying abstraction for building these object types is based on decal windows. I

developed decal windows as a clean interface to Interlisp-D windows that contain

mouse-sensitive regions. Each decal window object uses an Interlisp-D window with

specialized default procedures. The procedures simply generate a message to the decal window

object. Each sensitive region within the window is represented by a decal object. The mouse

event handling methods of the window find the decal over which a mouse event occured and

send that decal object a message indicating the type of event and its position. Each window

object has a list of all its decals, some of which may be visible and some invisible, that is, out of

the area currently in view in the window.

Decals can be grouped into hierarchical decal sets. These behave in the same way as decal

windows. Lists of visible and invisible decals are maintained and mouse events handed down

to the lowest level decal object that covers the region. If there is no decal covering the position

of the mouse event then the window itself handles the event by using a default method.

The hierarchical organization of decals and the differentiation between visible and invisible

sub-decals is done for efficiency purposes. Decal sets shorten the search time to find the decal

that will field the mouse event. Classifying decals as invisible and holding pointers in a

separate list further speeds up user interaction by limiting the search to the complexity of the

number of objects being viewed rather than searching the entire (and partly invisible) data

structure. The savings in computation are repaid when the window view area changes and the

decals must be reclassified. However, the user is more prepared to wait a couple of seconds for

an updated view than for a sluggish response to a mouse action.

Each decal is also responsible for its own display and clear operations but not for maintaining

a consistent view. Rather than leaving the resposibility for display update with each decal, a

decal window maintains two queues: one for regions to be cleared and one for regions to be

redrawn. When a mouse event causes drawing changes to occur, rather than updating its

display as it moves or changes, each object simply places its display region on one or both

queues. After the event has been processed, the window object empties the queues by clearing

all the regions on the clear queue and sending messages to all the objects that overlap the

regions on the display queue to redraw themselves. By using this method, the redisplay of the

window proceeds faster since it is all done in one operation rather than one object at a time.

The biggest advantage, however, is in program modularity. The overhead of maintaining a

130 A- Waves Implementation

consistent view of the diagram can be very high, since there are many display dependencies

that could cause objects to be redisplayed many items in an attempt to always keep the

drawing consistent. With the decal abstraction, all the programmer needs to decide is whether

the object will have to be drawn (if it is newly visible), redrawn (if it has changed in

appearance), or just cleared (if it is to become invisible) at the end of the current editing

operation and place the appropriate regions on the queues.

There are two variations of the basic decal objects. One is the extended decal. An extended

decal object has different mouse-sensitive and display regions. For example, a timing

constraint is drawn with arrows to point to its two events. However, the sensitive region is

only the area occupied by the text label. As an extended decal, it responds only to mouse

events within this smaller region. For display operations it uses the larger region that

includes the arrows. The methods defined for an extended decal distinguish between these two

regions while those for the simple decal assume the same region. The second variation is the

documented decal. It has the ability to hold arbitrary text, formatted by the Interlisp text

editor, TEDIT. This is used in Waves for maintaining documentation with the various objects

of the timing diagram. These two variations or properties of decals are embodied in mixin

classes. A mixin class is only used to give subclasses special properties and is never used to

instantiate an object directly.

Decal Windows-A.2
131

Specification Dialog Windows A.3

The decal abstraction also forms the basis for a set of specification dialog windows used to

collect parameters for Waves operations. Spec windows are decal windows with a set of decals,

each of which is specialized to hold a different argument type. When a mouse event occurs

within a decal, it prompts the user for a valid argument. Spec windows are an example of the

type of interaction, as outlined in section 3.1.1, that requires an active MOUSE process. Since

all editing operations are computed within the context of the system MOUSE process,

whenever a specification window is opened, MOUSE process is spawned so that the user can

continue to interact with diagram objects (e.g., by pointing at events to be connected by a

constraint) and spec window decals. Furthermore, the diagram can be scrolled in both

directions with the aid of the scroll bars and the entire contents of the current view can be seen

by the user. This would not be possible if the MOUSE process were in a busy loop waiting for

another argument for the current opeation. All mouse operations that could cause a change to

the diagram data structures must obtain the monitor lock of the diagram and are effectively

locked out while a specification window is open. The operations, such as scrolling, that only

change the view on the current diagram do not need to obtain the lock and can still be run.

There are three basic types of spec decals for three different types of arguments: boolean,

value, and menu selection. Variations of the BooleanSpecDecal are used to display the value

as ON or OFF rather than T or NIL. Boolean decals simply toggle their value when a mouse

event occurs within their region. Value decals can be constrained to accept only numbers that

pass a test contained in a standard method called ChangeFn. Specializations of the

ValueSpecDecal exist for accepting only integer, non-negative integer, or non-negative float

arguments. The user types the number in a window that is opened above the specification

window. The MenuChoiceSpecDecal prompts the user with a pop-up menu of choices from

which to select. Rather than a fixed menu specification, this decal requires the specification of

a function that can be called to obtain the menu. This is useful when the choices may change

in time, as is the case with signal names in a Waves diagram, as new signals are defined and

named they are available as choices immediately. The object class inheritance lattice for

decals and specification windows is shown in Figure A.l.

All the spec windows follow the same message protocol. They are called with a template

structure that provides initial values for the arguments and they return a structure with the

arguments entered by the user. Default values for the arguments can be set so that common

collections of arguments do not have to be reentered each time the window is used. A menu

attached to the specification window allows the user to indicate that the arguments are ready

to be used, that the operation should be aborted, and set and get the default values for the

windows's decals.

132 A- Waves Implementation

ExtendedDecaMxin

DocumentedDecaiMixin

Deca.IWindow --- SpecWindow

DecaiSet

/ BooleanSpecOecal --- DnOffSpecOecal

~ MenuGhoiceSpecDeca.l
Deca.l ~-

SpecOecal ·-~ ../'"' FixNonNegVa.lueSpecDeca.l

ValueSpecOecal E- FixVa.lueSpecDeca.l

~ NonNegValueSpecOecal

Figure A.l. The object class inheritance lattice for the decal abstraction and specification

dialog windows. Classes inherit methods and slots from their super classes. The most

general classes are on the left and the most specific on the right. All objects whose names

include the word Spec are used for implementing the specification dialog windows and

are specializations of the basic decal objects: Decal, DecalSet and DecalWindow.

ExtendedDecalMixin and DocumentedDecalMixin are mixin classes used to generate

extended and documented decals as described in the previous section.

. :............ : : : : :

Figure A.2. A specification dialog window for collecting the arguments required for a

timing constraint. This window includes four specification decals: two for time

arguments and two for Boolean arguments. The minimum time is defined as 1.2 cycles of

a period of the periodic signal BCLK* plus 25ns. The maximum time is defined simply as

400ns. The two Boolean values display the side of each edge from which the constraint is

to be measured. The attached menu is used by the user to indicate that the arguments

are ready to be used (OK), that the operation should be aborted (ABORT), or to set or get

default values for the arguments (Defaults).

An example of a spec window is shown in Figure A.2. It is used for collecting the four

arguments required for a general timing constraint. It is opened after the two events for the

constraint have been selected. The minimum and maximum time for the constraint must be

entered as well as the sides of the edges from which the constraint is to be measured.

Minimum and maximum times are limited expressions composed of two terms: a number of

cycles of a clock and an absolute time. The specification decal for these values is a new

specialization of the basic SpecDecal that uses a pop-up menu to allow the user to select which

Specification Dialog Windows- A.3 133

of the three parts of the expression is to be changed. If the periodic signal name is selected

then a menu of choices, containing the names all the periodic waveforms in the diagram, is

popped-up. The other terms prompt the user for a float or integer value. The two spec decals at

the bottom are specializations of the BooleanSpecDecal and are used to specify the side of the

edge to be used in measuring the time interval between the events. The value is displayed in

pictorial form rather than asTor NIL.

Waves uses eight types of Spec Windows for collecting arguments for different operations. This

abstraction greatly reduces the amount of program code required for user interaction and

creates a straightforward and uniform graphical interface for the user. All arguments are

visible while they are being specified and the operation can be easily aborted. The choice of

the appropriate defaults for an application can also greatly reduce the amount of time required

in the interaction.

134 A- Waves Implementation

Constraint Checking A.4

Waves diagrams do not only support the specification of timing constraints, they also check
constraints and highlight any violations. Events are highlighted when their positioning along
the time line violates at least one applicable constraint. Constraint checking is performed in
parallel with the editing operations by using the data-driven programming paradigm of
LOOPS. All events to which a constraint applies have a trigger, or active-value in LOOPS
terminology, assigned to the slot that contains their position in time. The active-value defined
for use with the constraints causes a procedure to be called every time the event position is
modified.

This mechanism makes constraint checking straightforward to implement. Each time an
event moves, the triggered procedure sends a messsage to each of the attached constraints. If a
violation is detected, the constraint places itself on a list of violated constraints associated
with that event. When the event object redisplays itself, it checks to see if there are any
elements on this list. If so, it highlights itself to indicate a constraint violation. Constraints
that are checked remove themselves from the list if they had previously been violated but are
now satisfied. In this manner, constraint checking is completely orthogonal to the editing
functions. Entire collections of events can be readjusted without any code required to check
the constraints. The constraints on the events that are moved will be rechecked
automatically. At the end of the editing operation, when the decal window redisplays its
contents, any events with violations are displayed with black bars above and below the edge.
Violated general timing constraints are displayed with their text label inverted (see Figure
A.3). No attempt is made to correct constraint violations. The user may be in the process of
some larger editing changes. The final resolution of constraint violations is left to the user.

Synchronicity constraints are handled differently from the ordering, simultaneity, and timing
constraints. Synchronous events do not have triggers attached if they only have the
synchronicity constraints. These constraints are the only ones directly enforced by Waves.
When a synchronous event is moved, it is moved to a position consistent with the setup and
hold times of the constraints. During interative editing the events are snapped to the nearest
correct position. When an asynchronous signal is changed to be synchronous its events are
adjusted to conform to the new constraint. Therefore, synchronous events can never be in a
position where they violate the constraint.

Constraint Checking -A.4 135

(3 Clock ..a

() Pha3e II*
~~

nnn Sync ~

P..sync 1 ..a

Async 2 ..a
•·•·•·••••• :::;· ~··==·\·~~;&;~{-: :::: ::;2·--· ~

·,, , ./

............................. :,~ .. -;;_,./..
... :~
~(1 ,2S@Ciock + 751'Mit1~

Figure A.3. An example of a Waves diagram with two constraint violations: a

simultaneity constraint violation between the first events along the two asynchronous

signals and a timing constraint violation between two events on the only synchronous

signal. Violated simultaneity constraints are drawn as line segments connecting the two

events, violated timing constraints are displayed with an inverted label. An event is

highlighted if it has at least one constraint that is violated.

136 A- Waves Implementation

Diagram Editing Support A.5

The Waves editor provides all the support and user interface functions for editing interface

specifications. This requires additional functionality beyond the basic operations described in

the previous sections. The user must be able to draw diagrams larger than the screen size and

be able to locate diagram objects quickly through graphical cues (e.g., pop-up menus).

Diagrams can be resized to any aspect ratio and size. In fact, all Interlisp-D default window

operations are available. The diagram can be closed to be reopened through interaction with

the Waves icon. The user can take a snapshot of a diagram view into a new window so that it

can be used later, for reference, when another view of the diagram is being edited. Of course,

the diagram can also be moved on the screen, buried beneath other windows, and brought back

up to the top so that it is fully visible.

Initially, a new Waves diagram does not contain any signals. Clocks, clock phases,

non-periodic signals, or computed signals are added through the use of a pop-up menu

available in the title window. An arbitrary number of signals and clocks can be added. The

diagram keeps expanding in the vertical direction and can be scrolled using the scroll-bar of

the signal name window. Signals can also be made invisible by deleting them from the

diagram. For example, many clock phases may be defined, but the user may not want to

clutter the diagram with many similar traces. The phases can be specified and then deleted

from the display. To completely eliminate a signal from the diagram it must be expunged.

Pop-up menus using the names of the signals as items are used to undelete (i.e., make visible

again) and expunge specific signals.

The editing functions on signals include renaming the signal, copying it into another, erasing

all events on it, erasing any constraints related to its events, and shifting a signal trace in

time. Electrical parameters of a signal can also be edited. These include the technology that

determines the logic levels and input/output capacitances and currents of the signal. Rise and

fall times of the signal can also be specified and imply the strength of the drivers required for

the interface. Signal directionality can also be changed as can any synchronicity constraints

on the signal. Extraneous events, that is, those between identical levels and with no

associated timing constraints relating them to other events, are usually the artifacts of editing

and can be removed from the diagram.

Operations on the other axis of the diagram can be obtained through the title bar, time line,

and trace windows. The diagram is scrolled in time using the scroll-bar of the trace window. A

pop-up menu on the time line allows the user to expand the time range of the diagram and

position the view to start or end at any time point in the range. The diagram can also be

rescaled from the default of 2 time units per screen pixel to anywhere from 1 to 32. The time

line menus also permit the user to define tick marks to be placed over the trace window to

guide the positioning of events and graphically define clock cycles. Any number of tick marks

Diagram Editing Support- A.S 137

can be defined, with a period and offset, and they can be made visible or invisible

independently.

Pop-up menus available from the title window of the diagram provide a way to bring any

constraints in the diagram into view. A menu of all constraints is presented to the user with

the items identifying the signal names and times of the constraint's events. The event can be

deleted, modified, brought into view, and blinked to identify itself on the screen. Similar

menus can be used for all labeled points in the diagram.

Diagram segment bars in the time line window are used to specify and access the parameters

of a diagram segment and modify the segment structure of the diagram. These include:

highlighting enabling events, specifying the number of iterations for looping segments,

editing the name of the segment, splitting or deleting the segment, and creating nested

sub-segments.

!1!1ififif!H(·:\:

:::::::::::::::: VI'!W OptiOtlS! :::

;:;:;:;:;:;:;:;: OA ~ R T C :;:

:;:;:;:;:;:;:;:; Last: 1 070 700 eoo 900 1 ooo 11 oo 1 200 ;::

!;!;!;!;!;!;!;!; Crnt! 840 dt! ·430 ~ o I o I I I o I I ~ ;!;
•,•,

•'•

i:i: I : I I : I I :i:
;~~ 0 C "' '''' '' . ' (,,y ' I '(' '''' ''' ''''' '(' ·o'.' ,,. ''''' \ '. ,, ~;~

lili ~·•··• : : : , 1 y : tl I : : ill
u; F * :::::::::::<::::<<:>:::::::::::::::::<::::::::::::::::<::::::::}' :t= ;;;
:::: I I I : I :::
!i!i G * :::::.:::::<:::::>::::::::>::::: ::::::::::Y :f::.::::>:::::<:> ;::

!i!i I I I I I ;:;

:;:;:: r:·:·::: :·: :.:::·: <.:.:t ;:;
~~~1 llH\ll; ~~~ ~1\ mm~l~ ~;l ~HlH\ ll~ ~~~ m ~i;~~l jllm 1~~ ~;l ~il :~: ~:~ :~: ~:~ :~: ~:~ :~: ~:~ :~: ~:~ !!! ~:~ :~: ::~ :~: ~:~ :~: ·:~ :~: ~:~: ~: ::~ :~: ::: :~: ~:~ :~: :::::: ·!· :::::: :!: ~:: :!: :::::: ~: ~ :!: ::: :!: :!· :!: :::::: ·!! ::: ~:: :::! :: :!: !!: ::: ·!· !!! ) ~l 

Figure A.4. A Waves diagram with its scroll bars. The shaded region in the scroll bars 

indicates the portion of the total diagram that is visible in the corresponding dimension. 

The scroll bars, like all Interlisp-D scroll bars, also support continous scrolling and 

thumbing. The arrows at the edges of the time line indicate if the diagram extends out of 

the window in that direction. Two sets of tick marks are displayed in the trace window. 

The major set (in dark lines) has a period of lOOns. The minor set (gray lines) has a 125ns 

period and is offset by 25ns from 0. 

Through the feedback window in the top left of the diagram, the user has control over which 

relations are to be displayed. The various types of constraints can be toggled on and off and 

menu operations can be restricted to only the currently displayed relations (ARJE, the all 

relations enable flag, toggles this facility). Furthermore, the All (active/inactive) flag, can be 

used to turn on and off the shading of inactive events (i.e. those that are only place holders for 

cross-diagram constraints). 

138 A- Waves Implementation 



Diagram Regions A.6 

For efficient interaction, editing operations must permit actions on entire collections of 
signals, events, and constraints rather than just one object at a time. Diagram segment bars 

provide a convenient way to get at the events and constraints within a segment. However, a 
more general way to specify a subset of the diagram objects is required. 

In Waves it is possible to indicate any set of events by specifying ranges along both of the two 
axes of the diagram. By holding the shift-key, the user can select a set of signals along the 

vertical axis. A signal is selected by clicking a mouse button over its name in the signal name 

window. The selected signals are all displayed inverted until a signal is selected while the 
shift-key is up. The horizontal range is specified with the aid of time interval markers. These 

are two vertical lines that appear in the trace window at specific time positions. The user can 
interactively (or through time line window menus) place the markers at any time point. One, 

both, or neither of the markers needs to be positioned. 

Whenever operations available through the title or signal name window are performed, they 
are applied to all events within these ranges. For example, to erase all events on two signals 

within a time interval, the user first selects both signals using the shift-select method and 
positions the time interval markers appropriately and then invokes the operation through the 

usual method (see Figure A.5). 

'NAVES> Interface x ·- ()per:ation Y -- E'-':3mple 
V1ew Options: 

O:)A. SR TC 
Lsst: 1 oro 
crnt~ 1 oeo dt~ ·, o +-

c 

·-! 
I;; 

700 
I 

1!100 
I 

900 
I 

......................................... ............... .................... ................. . 

G + :::::<::::::::::::::::<::::::::::::::;::::1 

[-EJ 

1000 
I 

[.:J 

1100 
I 

1200 
I -+ 

Figure A.5. A Waves diagram showing the use of interval markers and multiple signal 

selection. Four events are selected: the second in signal D, both events in signal E, and 

the first event of signal F. The shading does not appear in the diagram and is meant only 
to show the region being specified. The signals need not be adjacent. Operations can be 

selected that use the selected events as arguments. For example, the four events cau be 
shifted along the time axis. 

Diagram Regions- A.6 139 



Another important region defining the structure of Waves diagrams is the diagram segment. 

The diagram segment behaves exactly as a diagram. Events that exist in one segment cannot 

be moved outside that segment. In fact, there is a strong interaction between the diagram 

segment and synchronous signals. Whenever synchronous events are moved they must still fit 

within the boundaries of the segment and also be aligned with the edges of their periodic 

signal. The events can move either interactively or through an editing operation selected from 

a menu. If they are moved interactively, then they always snap to a position within the 

segment. If they are moved by a more complex editing operation, such as a change in the 

period of their periodic signal, then they must be realigned to completely new points. These 

points may not be within the boundaries of the segment. For this reason, whenever such 

drastic changes occur, Waves adjusts the boundaries of all diagram segments so that each will 

still contain the same events as before the operation (unless they are deleted). A copy of all the 

events in a segment can also be generated. This occurs when an alternative segment is 

created. All the events in the current segment are duplicated in the new segment so that the 

user can begin editing from a template that may correspond closely to the final result. Most 

alternative segments differ only in a few events and enablers. 

Segment boundaries can also be adjusted interactively through the use of the segment markers 

in the trace window. A segment marker appears at any common boundary between currently 

viewed segments. It behaves much in the same way as a time interval marker. A button event 

on the marker permits the user to move the boundary in either direction as long as no events 

would be placed in a different segment. 

140 A-Waves Implementation 



Waves Object Classes A.7 

Every discernible object in a Waves diagram is a specialization of a decal. Each of the four 
windows is a decal window containing different classes of decals. The object inheritance lattice 

for Waves objects is shown in Figure A.6. They can be divided into four categories of 

specializations of the basic decal objects. In this section, I will briefly describe the function of 

each object class and how they are interconnected by pointers. 

/ WAnchorWindow /? WSignaJNameWindow 

DecaJWindow --- WWindow ~ WSignaiTraceWindow 

'-~ WTimeLineWindow 

WSynchronizatlonSpec ""'WTitJeWindow 

---- WPeriodicTrace 

WSignaiTrace I 
DecaJSet --- WTrace =------

___- WDrderingArc 
ExtendedQilcaiMixin \ ..-= WZwayRel<ttion ~ 

I 
\ WSignaJRelatlon <::'" ::::0:::,.. WTimingConstraint 

1 ~ WNwayRel.uion --- WSimultaneityRelation 

I ---- WPeriodicEvent 

Decal "' ----.._ WSignalEvent , :::::==--~---ir/7 WEvent =-

---::--,, \ / ---- WCJockPhaseSignal 
-~ "'- ___- WPeriodicSignal =--
-~ N WBasicSignal ~ ---- WCJockSign<tl 

~""' ~11? WSignal --- WComputedSignal 
~ !' 

', '/ / WDiagramSegment 

• WTimeMarker ~ WlntervaiMarker 
---._ WSegmentMarker 

DocumentedDecaJMixin WavesOiagram 

Wa vesManager 

Figure A.6. The Waves object class inheritance lattice including the decal classes on 

which it is based. 

The first group consists of only two object classes: WavesManager and WavesDiagram. The 
WavesManager displays itself as the Waves icon and holds pointers to all the diagrams 

currently loaded into the address space. A WavesDiagram instance holds all the information 

that applies to an entire diagram. It also contains pointers to the five window objects that 

make up a Waves diagram as well as all signals and constraints. 

The second group includes specializations of the DecalWindow class. These are six classes 
corresponding to each of the five diagram windows described in section 3.2 and another class, 

WWindow, that holds the methods and slots common to all five window types. The windows 

have extra slots for their special characteristics. For example, the title window has slots for 

the interface, operation, and name of the diagram. The time line window holds the parameters 

Waves Object Classes- A. 7 141 



of the time line and the sets of tick marks. Of course, as specializations of DecalWindow, the 

sub-classes of WWindow hold pointers to all their decals. 

Members of the third group are specializations of DecalSet. The classes in this group are the 

data structures that represent signal traces. There are two types corresponding to the two 

principal classes of signals: periodic (WPeriodicTrace) and non-periodic (WSignalTrace). They 

hold pointers to all the events along the signal traces. There are two varieties because it would 

be highly inefficient to create an event object for all the edges on a periodic waveform. Rather 

than doing this, the WPeriodicTrace creates the event objects on demand only when the event 

is needed to handle a mouse event (i.e., the user has clicked the mouse over the event to obtain 

a pop-up menu of operations). Periodic signal traces also handle all the display operations for 

the trace rather than relegating it to individual events as the non-periodic trace does. The 

common methods to both trace classes are held in the WTrace class. 

The last group includes all the decals that exist in the signal name, trace, and time line 

windows. The three types of timing constraints between event pairs are specializations of the 

WSignalRelation class (WOrderingArc, WSimultaneityRelation, WTimingConstraint) and are 

further distinguished by whether they are relations that exist between two or any number of 

events (W2wayRelation, WNwayRelation). The synchronicity constraint 

(WSynchronizationSpec) is not displayed as a distinct object and is not a subclass of the decal 

because it expresses constraints on all the events on a signal. Events are separated into 

periodic and non-periodic events (WPeriodicEvent and WSignalEvent) with a super-class to 

hold common methods (WEvent) in the same way as traces. Time markers (WTimeMarker) are 

differentiated by the two classes of time interval markers (WlntervalMarker), of which a 

maximum of two exist, and segment boundary markers (WSegmentMarker). 

WTimingConstraint and WTimeMarker are also subclasses of the ExtendedDecalMixin 

because their display image is larger than the area to which they are mouse sensitive. 

Signals are broken down into four classes corresponding to the basic signal types: clock 

(WClockSignal), clock phases (WClockPhaseSignal), synchronous or asynchronous signals 

(WSignal), and computed signals (WComputedSignal). The two periodic types share a common 

super-class (WPeriodicSignal) and common methods and slots of all signal types are defined in 

WBasicSignal. Signals are the decal objects visible in the signal name window and also hold 

pointers to the corresponding signal trace in the trace window of the diagram. 

WDiagramSegment is the only class that defines decals used in the time line window for 

segment bars. They also hold pointers to events that occur within their time range. As is 

evident from Figure A.6, all decal specializations, and the diagram itself, can have attached 

text by virtue of having DocumentedDecalMixin as a super-class. 

142 A- Waves Implementation 



Portability Issues A.8 

The implementation of Waves can be broken into two independent parts: one concerned with 

input/output operations and the other with data structure manipulations. The input/output 

operations constitute all interactions with the user through the screen, mouse, and keyboard 

of the workstation. The data structure routines manage the creation of new objects and 

maintain consistent pointers between them. This division was conciously enforced in the 

implementation in the hope that it will make the task of porting Waves to other hardware and 

software environments straightforward. 

Only the input/output routines require special attention. These are always the most 

environment dependent functions of any interactive application. The Interlisp-D/LOOPS code 

used in managing the data structure uses no special features of the Interlisp-D and LOOPS 

languages and can be easily translated into any other object-oriented language. In fact, it 

should be trivial to translate the code into the Common Lisp Object Standard (CLOS), that is 

becoming one of the most common languages in this class [Bobrow88]. 

The only LOOPS feature that cannot be directly translated is the active-value mechanism 

used in checking the constraints in Waves diagrams. However, it can be easily translated into 

a queuing mechanism that has the same functionality (i.e., whenever the position of an event 

is changed, pointers to the constraints on the event be placed on a queue). At the end of the 

interactive operation, all the constraints on the queue can be checked and highlighted if a 

constraint violation occurred. Changes to the code will be minimal as there are only three 

procedures where event positions are modified. All of the code for Waves uses static scoping 

even though Interlisp-D supports dynamic scoping. Similarly, the flexible argument passing 

of Interlisp-D was not exploited. These policies increase the modularity of the programs and 

permit other Lisps to exploit their optimizing compilers (e.g., Common Lisp). 

The layer of objects in the decal abstraction provides a separation between the input/output 

functions and the rest of the program (see section A.2). When Waves is ported to an 

enviroment with different input/output primitives, this layer must be rebuilt to provide the 

same functionality in the new environment. The graphics functions required are well-defined 

and common to most modern workstation environments. The same can be said for the 

facilities for handling mouse and keyboard events [Gettys86]. Although the rebuilding of this 

new object layer could require considerable effort it is a well-defined and modularized problem. 

The only other point that demands attention is that in Interlisp-D, Waves does not require a 

separate process but rather its functions are evaluated under the Interlisp-D MOUSE process 

(see section A.l). In other environments with more multi-processing protection and multiple 

address spaces, a separate process may be required. It should be a trivial task to set up a 

separate process for each Waves diagram within its own address space and forward all relevant 

user-interactions (e.g., mouse movement in the diagram windows) to that process. 

Portability Issues-AS 143 



To exist in a general-purpose CAD environment, Waves will eventually need to be rewritten to 

use a CAD database such as OCT [OCT87]. This is a trivial task given the object-oriented 

nature of both Waves and OCT. There could be a one-to-one mapping between Waves objects 

and OCT objects corresponding to an interface view of a cell. Using the editing capabilities 

provided for OCT is a different matter. OCT's VEM editor is ideal for applications where 

operations can all be written to follow the supported editing paradigm, namely, argument 

selection followed by operation invocation. Waves is not such an application, it relies on access 

to lower level mouse operations to provide a modeless interactive waveform editing capability. 

IfVEM were reorganized to have hooks at these lower levels then Waves could be rewritten as 

a VEM application. This would be the ideal situation for Waves. It would be a timing diagram 

editing tool integrated with a CAD database, making its data structures available to other 

interface tools (see section 3.4), and running through an editor written for the X window 

system, enabling it to run locally on a user's workstation or remotely on a compute server. 

144 A-Waves Implementation 



Waves Specification Examples B 

The utility of Waves is best demonstrated via a collection of sample interface specifications. 

This appendix contains Waves specifications for seven representative interfaces ranging from 

system busses to microprocessors to memories. For each interface the specification is divided 

into parts corresponding to the interface's operations. These examples are by no means 

complete. Only a subset of the interface operations available with each interface are specified. 

However, they do constitute a representative set of operations - similar to the subsets 

designers typically consider. The references provide a more complete description of the 

functionality of the interfaces. 

145 



The Intel Multibus B.l 

System busses support two types of devices: masters and slaves. Masters arbitrate for control 

of the bus and then initiate data transactions to slave devices. Slaves merely service requests 

from masters. Each slave is allocated a region of the address space and only responds to 

requests with addresses within that range. 

The Intel Multibus is a popular system bus for 16-bit computer systems [lntel82]. Arbitration 

for the bus is performed synchronously to a bus clock while data transactions may proceed 

asynchronously. There is a 20-bit address and a 16-bit data field for each transaction, both of 

which are negative logic. A separate signal (BHEN*) is used to distinguish between 8-bit and 

16-bit transfers (in the specifications below it is always set for 16-bit transfers). 

Five operations for the Multibus are specified in this section. There are two slave operations 

(read and write) and two master operations (read and write). The two master operations also 

depend on an arbitration sequence which is included in a separate section. Signal directions 

are as they would be from the perspective of a circuit being connected to the bus. Other 

operations supported by the Multibus include interrupts from slaves to masters and interrupt 

acknowledgements from masters to slaves. They are not described here for reasons of space 

and because they are not fundamentally different from the operations described below. 

Slave Read 

BHEN* 

ADR[O: 1 9]* ~ 

MRDC* ~ 

DAT[O: 15]* ~ 

B.l.l 

..................... -::::~i·~·~.................... ::(~or):>ddr~:S.~Y: :: :: ::::::::::::::::::::·:.······ 
~(~.:.·.~-'>·!<'-· -----

.................... ················· ··::;,,~···· 

Figure B.l. The Multibus Slave Read operation. 

The slave read operation is straightforward (see Figure 8.1 ). A four-phase protocol exists 

between the :viRDC* and XACK* lines. The address is valid while the command is asserted 

and the data is valid while the acknowledge is asserted. There are some address setup and 

146 B- Waves Specification Examples 



hold time constraints as well as minimum durations for asserting the command. Note that 

there is no setup time for the data before XACK* is asserted. This means that XACK* will 

need to be delayed before it can be used to latch the data (due to the setup time requirements of 

latch circuits). The operation begins when the address lines become valid. A Boolean 

condition on that event specifies a range of address values for which the slave will actually 

respond (i.e., begin and carry-out the operation). 

Slave Write B.1.2 

The slave write operation is similar to that for slave read (see Figure B.2). Address and data 

are now treated in the same manner with identical constraints. Like the slave read operation, 

a Boolean condition on the first event is again used to limit the address range for which a 

device will carry out the operation. 

8HEN* 

ADR[0:19]* ~ 

MWTC* ~ 

DAT[O: 15]* ~ 

~<ACK* 

····················<-~:::::::::::::::::::::::::::::::::::::::::::::::::::~~:q:r::A.:~:~:~:~:~~)::::: . ./.~: ... ·················· 
":~~~-. ,,oomin: . _'5JQfinH 

.................... //-~-:._~-~Nt.. . ... ~;/' _ _._t,. ,, ~-. ··········· 
............... ~ =ST D&.t$) / -.~ 

--------------'""-'<::<::::;~,/ -"4 j'e!Smax) 

Figure B.2. The Multibus Slave Write operation. 

Interrupt operations are simple variants of these two slave operations. A computed signal is 

used to latch the interrupt line and record that the slave issued the interrupt. It must then be 

possible to read and write this bit from the master that is interrupted. These are simply 

modified slave read and write operations. The address range condition on the first event now 

corresponds to the place in the slave's address space where the interrupt register resides (i.e., 

in this case the interrupt bit and possibly some other internal interface state). The data field 

on the read includes the value of the interrupt bit on one of its lines. On a write, the interrupt 

bit is cleared. See section 3.3.1 for a more complete discussion of computed signals and 

cross-operation state. 

The Intel Multi bus- B.1 
147 



Arbitration B.1.3 

Arbitration for the Multibus, unlike the data transactions, is performed synchronously to the 

bus clock (BCLK*) (see Figure B.3). The master wanting to gain control of the bus first issues 

a request via BREQ* (for daisy-chain arbitration) and CBRQ* (for parallel arbitration) and 

waits for the BUSY* line to go inactive (other masters relinquish the bus) and its priority line 

(BPRN*) to go active (permitting the master to take the bus). The BPRO* line is used to 

implement a daisy-chain priority scheme and is represented by a computed signal whose 

Boolean function is (OR (NOT BREQ*) BPRN*). 

(S> 8CLK * -Ill 

11M 8REQ* lit 

11M C8RQ* lit 

11M BUSY* +. 

11M 8PRN* -Ill 

~ 8PRO* lit 

\ '; 

Figure B.3. The Multibus arbitration sequence. 

The edges of synchronous signals are drawn stretched out to indicate the uncertainty of 

exactly where the edge will fall. The constraints on the edge guarantee that it will respect the 

setup and hold time requirement of the signal. That is why the edge is drawn as two edges 

with a don't care condition in between. The spacing between the two edges is from one hold 

time to the next setup time. 

The shaded signal at the bottom of the diagram is not part of the sequence of events required 

for arbitration but is used as a place holder for a cross-diagram constraint (see section 3.3.3 for 

a discussion of cross-diagram constraints). 

148 B- Waves Specification Examples 



Master Read B.1.4 

The master read and write operations are reflections of the slave operations (i.e., inputs and 
outputs are reversed). The events and constraints are identical (see Figure B.4 and B.l). The 

only change is that there is no longer a condition on the address lines because masters can 

issue requests to any address. 

BHEN* 
··-----------------------------------------~ 

ADR[O: 19]* ~ 

MRDC* 
~e5max) 

DA T[O: 15)* "'I 

XACK* "'I 

Figure B.4. The Multibus Master Read operation (combined with the diagram of Figure 

B.3). 

This operation relies on the master first having control of the bus. Therefore, the specification 
for this operation consists of two diagrams, the one above and the arbitration diagram of 

Figure B.3. They are linked through the use of three sets of merge labels. One set links the 

first output event on the BUSY* signal with the first event of the read operation (the 

simultaneous assertion of BHE~*, MRDC*, and the address lines). The second set is used to 

synchronize the completion of the transaction (deassertion of BHEN*, MRDC*, and address) 
with releasing the bus (the last output event on BUSY*). The last set is used to transfer a 

timing constraint across diagrams, namely, the maximum timing constraint between the 

deassertion of the address and the BUSY* signal. 

The Intel Multi bus- 8.1 149 



Master Write B.1.5 

The master write is a reflection of the slave write and is combined with the arbitration 

diagram in the same way as the master read operation (see Figure B.5 and B.3). 

BHEN* ~ 

ADR[0:19]* ~ 

MWTC"' ~ 

D.i>,T[0:15]* ~ 

XACK* .;{) 

Figure B .5. The Multibus Master Write operation (combined with the diagram of Figure 

B.3). 

150 B- Waves Specification Examples 



The Multi bus Design Frame B.2 

The Multibus Design Frame (MDF) is a collection of circuitry that implements many of the 

functions required when connecting a custom chip to the Intel Multibus. It presents a simpler, 

more consistent interface to an internal circuit than would a direct connection to the Multibus 

[Borriello85]. While the Multibus has an asynchronous transaction protocol and a 

synchronous arbitration protocol and many timing constraints, the MDF presents a uniformly 

synchronous interface to its internal circuit and four basic operations: slave read and write 

and master read and write. Details of arbitration are handled by the interface. In Appendix 

D, Janus is used to synthesize the Multibus Design Frame logic from the specifications of this 

section and those of section B.l. 

Slave Read B.2.1 

() Phi2 ... ·.. _.· 

HHH ·~:1@Piii2; 

nnn SRD 

nnn .A.DRI[0:19] 
.....,.,.,..!"-(1 @P Mi2min~;.,.,. ""''=" .. ~ .. ""'" .. '"""· ~ .. ,.,. .. ,.,. .. ~. ,.,. .. ~.~. ,..,-,~..,.....,~~~,..,.,..,~~~~ 
731 .Address a:.:S:(~: .. ::.H ... ,,,., .. ,,,,, ., .. ,, ... 

nnn SACK 

nnn DAT0[0:15] >0 
······· os;!a:· · ··· 

................. 

Figure B.6. The Multibus Design Frame Slave Read operation. 

The MDF operations are straightforward to describe (see Figure B.6). The slave read 

operation consists of a pulse exactly one cycle wide to the internal circuit that signals an 

incoming read request that must be serviced (the address is valid for at least as long as the 

duration of the pulse). The internal circuit of the design frame is then expected to respond 

some time later with a pulse at least one cycle wide (and data to be returned to the requestor 

that is valid while the pulse is asserted). All signals are expected to be synchronous to the 

clock of the internal circuit, changing while Phi2 (the second phase of the clock) is asserted. 

The Multi bus Design Frame- B.2 
151 



Slave Write B.2.2 

The specification of the slave write operation is almost identical to that of the slave read (see 

Figure B.7). The differences are as expected. The data is presented to the internal circuit at 

the same time as the address and no data is expected to be returned in the other direction. 

() Phi2 >0 

nnn SWR ~ 

nnn ADR 1[0: 19] ~ 

nnn SACK "ii 

Figure B. 7. The Multibus Design Frame Slave Write operation. 

Master Read B.2.3 

() Phi2 

nnn ADRO[O: 19] "ii 

··'~···· 

.... ~(1 ~~~~~~~~n~ "-~: : . ·.·.·.·.· .. ·.·.·.·.·.·.· .. ·.·.· ·.·.· · .. 

........ .. ~r.r--_ .. _ .... '""'~1@~iii.2) . 

--------------....:J..J~(1@Pniamin~ 

nnn MRD "ii 

RM MACK ~ 

RM OA TI[O: 15] ~ .,.,.,-;..,.,.,-,.,.,-,.,-:-:-:.,.,.,,.,.,.,-~.,.,.,-;~ .. -:-.. :-:-.. :-:-.-:-: .. ~..,.,.,-,.,.,-,.,.,-.. .,-, .. ..,.,.,,,a Data '{f'-'-::.'-'-·. '-'-'-'-'-'-'-'-~ 

Figure B.B. The Multibus Design Frame Master Read operation. 

The master operations are initiated by the internal circuit of the MDF. For a read, a pulse at 

least one cycle wide is generated to be followed some time later with an exactly one-cycle wide 

acknowledgement pulse and the data read (see Figure B.8). The MDF translates this request 

into a Multibus arbitration cycle and read transaction. 

152 B- Waves Specification Examples 



Master Write B.2.4 

Again, the diagram for the master write operation is almost identical to that of the master 

read (see Figure B.9). The simplicity of the MDF internal interface is obvious when one 

compares the diagrams of this section with those of section B.l. 

0 Phi2 1(1 

nnn MWR 1(1 

nnn ADRO[O: 19] 1(1 

nnn DAT0[0:1~] 1(1 

Figure B.9. The :\-iultibus Design Frame :\-faster Write operation. 

The Multi bus Design Frame- 8.2 
153 



2-Phase and 4-Phase Protocols B.3 

Handshaking protocols are used to interlock the transfer of data between two circuit blocks. 

Two commonly used protocols in delay-insensitive or self-timed logic are the 2-phase and 

4-phase protocols [Molnar85, Sproull86]. They are distinguished by the fact that the 2-phase 

protocol is sensitive to signal transitions while the 4-phase protocol is sensitive to signal 

levels. 

2-Phase Protocol B.3.1 

The 2-phase protocol initiates an operation whenever there is a change of logic level (a 

transition) on its request line (see Figure B.lO). The transfer is acknowledged by a change of 

state on the acknowledge line at some later time. This can be represented in Waves by the two 

diagrams above. One diagram represents the operation that begins when the Req line goes 

high and the other diagram when Req goes low. To ensure that two operations are not 

concurrent, Boolean conditions are attached to the two events on the Req line. In the first 

diagram, this condition is that Ack is low ((NOT Ack)) (i.e., the previous operation has been 

acknowledged and no operation is pending). In the second diagram, the corresponding 

condition is that Ack is high. 

Req 1{] 

Data[0:31] >{) 

Acl<. 11> 

Req 1{] 

Data[O; 31] >{) 

Ack 11> 

Figure B.lO. The 2-Phase Protocol. 

154 

~ i+-<'25min) 

~ ~25mln) 

·--•-·-•-·-•·_:·_:_._._._:.~:.·.·J _______ -_--_-_-___ -_'_:._·_-_-_'_-_: ___ _-__ ~_-_-.~-----_-_--_.t:a_-_:_:· __ 

____ ~:-~____::,.,--""" _______ J;-f;_··-~-~----------~----·-

B- Waves Specification Examples 



The minimum timing constraint between the assertion of data on the Data lines and the Req 
transition indicates that Req may be used to latch the data if this should be required and a 
latch is available with an adequate setup time (i.e., less than the value of the timing 
constraint). 

4-Phase Protocol B.3.2 

The 4-phase protocol is very similar to the 2-phase except that the start of an operation is 
signalled by Req being high (see Figure B.ll). Both Req and Ack must return to a logic low 
level before another operation may begin. This wastes some time compared to the 2-phase 
protocol but usually results in simpler interface circuitry (level, rather than transition, 
sensitive). In Appendix D, Janus will be used to synthesize an adapter circuit that converts 
the 2-phase protocol to 4-phase. 

Req 

Data[0:31] 

Ack ;;J 

Figure B.ll. The 4-Phase Protocol. 

2-Phase and 4-Phase Protocols- 8.3 155 



SPUR PCC-SBC Interface B.4 

SPUR is a VLSI multiprocessor workstation [Hill86]. Each CPU includes a sophisticated 

cache controller that implements a snooping bus cache coherency protocol directly in 

hardware. The cache controller is composed of two parts: a processor cache controller and a 

snooping bus controller. The processor cache controller performs read and write requests 

made by the CPU, usually finding the data item resident in the cache. A cache miss or flush 

operation requires data to be transferred between the CPU and main memory over the system 

bus. The snooping bus controller (SBC) services these operations and monitors data transfers 

occurring on the system bus between other CPUs and main memory. The SBC services some 

bus requests in the place of main memory when it detects that its cache holds the most recently 

modified contents of a particular memory location. 

The two components communicate with each other via handshaking operations that guarantee 

that only one unit will access the single data cache at any one time. This handshaking circuit 

is the SPUR PCC-SBC Interface [Gibson86]. There are two basic operations supported by this 

circuit: a PCC request for data to be sent or retrieved from main memory by the SBC and an 

SBC request for use of the processor caches to service another CPU's request for data. 

Rather than describing each interface separately, this section groups diagrams for the same 

operation together in the same subsection. This is for explanatory purposes only. 

156 B- Waves Specification Examples 



Clock Signals 

()\ CLK 

{J Phi12 

{J Phi3 

{J Phi4 

C9 CLK* 

()PhiS 

() PhiA 

()Phil 

'II 

'II 

'II 

'II 

Figure B.12. SPUR PCC and SBC clocks and sub-phase relationships. 

B.4.1 

The two timing diagrams of Figure B.12 specify the relationship of clock phases in the two 
components. They are shown once here so as not to clutter the Waves diagrams describing the 
interface operations. The two clocks are completely asynchronous and have different 
sub-phase relationships. 

PCC to SBC Request B.4.2 

The PCC issues a request to the SBC (PCCReq in the top diagram) along with a code for the 
type of operation it is requesting (PCCReqC[0:3]) (see Figure ·B.13). The SBC performs the 
operation and returns a code (SBCAckC[0:3]) with its acknowledge pulse. 

SPUR PCC-SBC Interface- 8.4 157 



0 Phi4 

nnn PCCReq ~ 

nnn PCCReqC[0:3] ~ 

nnn SBCAci<,C[O: 3] ~ 

ijjg; SBCDirty 

Mil ClrConfirm 

!:t> Confirm 

0 PhiA 

Mil PCCReq ~ 

Mil PCCReqC[O: 3] ~ 

Mil S8CAck ~ 

Mil S8CAckC[0:3] ~ 

Mil SetDirty ~ 

!:t> Dirty 

ijjg; ConfirmOut 

.. 
·····~<·~@p~·;·;;::;=;l 

......................... £ ·. 

··················•···•················ 
........ !.:.::.;'\'\, · ........ , ....................................................................................................................... . 

,:,::c::::::: \\~,,;;:' :'::,·; ',~::::;;:;z,:z:; ;: zz: ';: :::·;:z::;c zz::z: 

~ ~H;1@Pni4) 
PAC 

. . . . . . . . . . . . . . . ' . ' . . . . . . . . . ' 
1+-\1 @PniA) 

Figure B.13. The SPUR PCC-to-SBC Request operation. 

Two signals complicate this operation. The PCC can cancel a request by asserting the 

ClrConfirm signal. The Confirm signal is used to implement this protocol. It is a computed 

signal whose function is to latch the occurrence of PCCReq and then optionally clear it if 

ClrConfirm is asserted during the operation (Confirm = (SR PCCReq ClrConfirm)). The 

ConfirmOut signal to the SBC is another computed signal that simply adds the synchronicity 

constraints of the SBC interface to the internal Confirm signal (ConfirmOut = Confirm). The 

other complication arises from the SBC which may assert its SetDirty line to indicate a data 

status for the operation. This would normally be a part of the acknowledge code but the signal 

is transitory and may occur before the acknowledge pulse is ready. Therefore it, too, is latched 

by a computed signal (Dirty = (SR SetDirty PCCReq)) and then transferred to the PCC 

interface via a second computed signal (SBCDirty = Dirty). 

158 B- Waves Specification Examples 



SBC to PCC Request B.4.3 

An SBC request is similar to those of the PCC except for some values of timing constraints (see 
Figure B.14). Another difference arises because the SBC also forwards interrupts directed to 
its CPU. Therefore, the request code is composed of two parts: a request code (SBCReqC[0:2]) 
and an interrupt type number (SBCinum[0:3]). There are separate latch signals for the two 
codes (SBCReq and SBCinumL) because the interrupt code may no longer be available when 
the SBC is ready to issue the request one cycle after the interrupt occurs. There are no special 
signals that need to be latched as in the case of the PCC request. 

C) PhiA 'II 

1\M S8CReq 'II 

~ S8CReqC[0:2] '{) 

1\M SSC lnumL 'II 

~ S8Cinum[0:3] 'II 

~ PCCAck 

~ PCCAckC 

C) Phi4 

~ SBCReq 11> 

~ SBCReqC[O: 2] 11> 

~ S8CintN[0:3] 

1\M PCCAck ..g 

1\M PCCAckC ..g 

........ :::.l ......... ····i+-(,'"(~·p·trTA) 

';.~¥_._._._._._,_,_:_-••.... -~.)_._~1~.~~-:_:_ .•• _,_:_;;-;• ~c .• ~~ ~; ; 
: .::::::::::;,;:~:x....... f..... ············--·~:::~-~ ..... :.:::::.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:. . . . . . . :. :-:-:-:.:.: 

~ SAC 

'f.-(1@PHi4) 

···." r· '-
'SRC l.:-··.·· A.:-·-·· ::::x-·: ... ,., 
." I ::::::J· :::j IHtNu'i'ij X.:.·· '·'·>>} :-:-·; 

"'""-_. . ... J ................... , 

Figure B.l4. The SPUR SBC-to-PCC Reqeust operation. 

SPUR PCC-SBC Interface- 8.4 159 



Cache Handshaking B.4.4 

() Phi4 . . 
~c1 '®"F·ni4.H 

11M GrantCache ~ 

11M HaeCache ~ 

() PhiA 
1+--(1 @PMiAmin ~ 

11M GrantCache ~ __Lj ---- 1~:.:..>..:....\ --------=~~----
-------- ~ ~1@PhiA) 

-~·: .. :} 11M CacheRel ~ 

Figure B.15. The SPUR PCC-SBC Cache Handshaking operation. 

The cache handshaking protocol is really part of the SBC request operation (see Figure B.15). 

However, since it uses a completely separate set of signals, it is represented here as a distinct 

interface operation. Since there is no data transferred in these diagrams, two ordering labels 

are used to interconnect the event sequences of the two diagrams. The labels exist between the 

first events on the GrantCache signals and from the first event on the CacheRel signal of the 

SBC to the second event of the HasCache signal of the PCC. Furthermore, a constraint also 

exists between these last two events. The time between CacheRel going high to HasCache 

going low must be at least two cycles of Phi4. This is implemented via a delay condition on 

HasCache ( (DELAY CacheRel 2@Phi4 ~IL), delay a minimum of 2 cycles with no maximum 

constraint). 

160 B- Waves Specification Examples 



The Texas Instruments NuBus B.5 

The Texas Instruments NuBus is a higher performance bus than the Intel Multibus 
[Texaslnstruments85]. It is the system bus of several commercial workstations and the 
Berkeley SPUR workstation [Hill86]. Unlike the Multibus, both arbitration and data 
transactions are performed synchronously. All interrupt operations are memory mapped and 
fall into the category of data read and write operations. This section consists of three parts. 
The first specifies the arbitration protocol and the other two describe the master data 
operations. Of course, the arbitration specification is used together with both the read and 
write specifications. 

Arbitration B.5.1 

The N ubus has a straightforward arbitration algorithm that utilizes a four-bit 
identification/priority value for each of the masters on the bus. The diagrams of Figure B.l6 
are two views of a single diagram that includes a conditional branch and a looping segment. 
The operation begins by asserting the RQST* line only if RQST* is unasserted in the previous 
cycle (a Boolean condition attached to the event on RQST* in the first diagram segment). The 
bidirectional ARB[0:3]lines are asserted on the previous edge of the system clock. The value 
of these lines is determined from a Boolean equation provided in the N uBus specification and 
is based on the value of the ID[0:3]* lines. The functions are shown below: 

ARBO* = (NAND (NOT !DO*) (OR (NOT ID3*) ARB3*) (OR (NOT ID2*) ARB2*) 
(OR (NOT IDl*) ARB!*)), 

ARB!*= (NAND (NOT IDl *)(OR (NOT ID3*) ARB3*) (OR (NOT ID2*) ARB2*) ), 
ARB2* =(NAND (NOT ID2*) (OR (NOT ID3*) ARB3*) ), 

and ARB3* = ID3* 

The next event is based on the value of the ARB[0:3]lines 2 cycles after they are asserted. If 
they are equal, then the Get Bus Immediately segment is enabled, otherwise the Wait for 
Others segment is. The first corresponds to the master winning the arbitration contest and 
beginning its bus transaction and the other corresponds to another master winning and the 
requesting CPU having to wait for the other master's transaction to complete before it can 
again test to see if it has won. The enabling events for the Get Bus Immediately segment is the 
event on RQST* together with the 2@CLK* (2 cycles of CLK*) constraint. This reads as 
follows: RQST* can be deasserted if, after 2 cycles of CLK* from the assertion of RQST*, the 
ARB[0:3]* lines are equal to the ID[0:3]* lines. Another master will assert START* (and then 
ACK*) if they are not equal at that time. The master continues to assert request and the 
ARB[0:3]* lines until the other master has completed the transaction and a new decision is 
made. This method ensures that each master will get serviced in priority order and, because 

The Texas Instruments NuB us- B.S 161 



RQST* cannot be asserted when other masters are already involved in an arbitration contest, 

no master will be starved. 

WAVES> Nu Bus -- M.:;<;t~r ''IVrit:e, Mo<'ster Re~d -- Arbitr;;.tie~n 

111~w Options: 
O.A Sf'l TC All 

Last: 47e 
Crnt: 302 dt: ·174 

~ CLK* "" 
11M RQST* + 

~ AR6[0:3]* + 

11M START* + 

nnn ~.Ct-<. * "" 
10[0:3]* "" 

<3 CLK* "" 
11M RQST* + 

~ AR6[0:3]* + 

11M START* + 

nnn ACt<.* "" 
10[0:3]* "" 

0 
I 

100 200 
I I 

300 
I 

400 
I 

500 600 
I I 

700 
I 

800 
I 

Figure B.16. The NuBus arbitration sequence (two views of the same diagram showing 

different segments). 

When the master finally gets its turn, it deasserts the RQST* and ARB[0:3]* lines and begins 

one of its transactions. These are represented by the diagrams of the next two sections. They 

are merged with the arbitration diagram at the two events on START* and ACK* (both 

shaded) in the Get Bus Immediately and Get Bus segments. These events are used as place 

holders for ordering and timing constraints between the diagrams. 

Master Read B.5.2 

A master read operation consists of events defining two basic cycles (see Figure B.17). The 

first cycle specifies the operation (read or write) and address and another cycle returns the 

data and status code to the requesting master. Both TMl *and TMO* high during the START* 

162 B- Waves Specification Examples 



pulse signify to the slave that the operation is a read. For these diagrams and those of the next 

section, all events occurring at the same clock edge are related by a simultaneity relation. 

\·'v'.A, VES> Nu Bus-- Ma~t .. r Re.:;d -- Dat:<o Transaction 
\lliW Opt1011:S:: ARIE 

OA SP'I TC 
f'lequest I<;O:>eus TranSfer complete 

Lut: ~!!!e 0 ,00 200 300 400 500 600 
Crnt: 438 dt: 82 I I I I I I I 

(9CLK* .a 
~ H,@CLK>I<) 

11M START* II+ ),::<~ _j""'~:<.,...,:Jr-----+----------

11M TM1"' .&; --~-~-r--~~------~--·.~:~:~::;........ .,.,.,.~ ............ . 

11M TMO* + ----'-:::· ~-r--~~-----+----~:~:~::: .......... ...... ::.=:.::.=~ .... ---· 

11M AD[O: 31 ]"' + 

11M ACf<. * ··········································· •·········-~=~·:·:·:·:·:·:~~---······· . . =-.·: .. :::.:; 

_EB 

'vV AVES> Nu Bus -- Ma~t,.r Re;;.d -· Dat:<o Transaction 
VH•W 0pt1011S: AR/E 

OA SP'I TC 
Las:t: 35e o 
crnt 438 dt: 62 1 

(;) CLK* .a 

P'lequest 

,00 200 
I I 

300 
I 

Error 

400 500 
I I 

600 
I 

11M START* 
~ f;-(,@CLK+l 

\::::\ ~-r---------1-----------

11M TM1* + 

11M TMO* + 

11M ACf<. * ·························· ..................... ---····-~=~':':':':':':~~---· . 

Figure B.17. The ~uBus Master Read operation (two views of the same diagram showing 

different segments). This diagram is combined with that of Figure B.16. 

Sometime later, the slave will respond with an ACK* pulse and values of TMI * and T:MO* 

corresponding to an operation status code (timeout, error, etc.). The operation may end 

correctly (top diagram) or result in an error (bottom diagram). The enabling event for the two 

segments is the first event on ACK* and the two are distinguished by whether T:\11 * and 

T:MO* are both low or at least one is high when the ACK* event occurs. 

These diagrams demonstrate the specification of a multiplexed data line (AD[0:31]* carries 

both Addr and Data) and conditional ending of an operation. This diagram may be linked to 

another interface that also distinguishes between these two conditions and has a conditional 

ending for its semantically equivalent operation or to one that does not distinguish between 

the two and performs the same sequence of events regardless of the status code. In the former 

case, this is implemented with two ordering labels on different events in mutually exclusive 

segments. In the latter case, the two ordering labels will be on the same event. 

The Texas Instruments NuB us- 8.5 
163 



Master Write B.5.3 

The data write operation is identical to the data read except that T:Ml * is asserted low (to 

signal a write to the slave) during the START* pulse and the data to be written is available on 

the AD[0:31]* lines immediately after the address and until the ACK* pulse is received (see 

Figure B.18). 

'.,',lAVES> Nu Bus --1'4zosterWrit:e .. D.;;t;;; Transaction 

Vlf!W Op!IOI1S; AF\iE 
OA Sl'l TC 

Request l<.,>eus TranSfer Complete 

LISt: ~130 Cl 100 200 300 400 500 600 
c~nt: 570 at: 21 o 1 I I t I I I 

(5\ CLK* .0 
H1@CLK"') 

11M START* lit 

11M TM1* +(It .... : .. ±""''"''""'"''"''••••• 

11M TMO* + _ __,,::;:-:;:;·Ti -"\:;:;::::L----t--.,·.:.: . .-:~ .. . .......... ~ ....... . 

11M AD[O: 31 ]* + pat~. 

nnn ACV * <{] 

~1@CLK'") ->1 
..... ········1············::': 

E~ 

\.VAVES> Nu Bus-· M.;;ster Write-· Q.;;t.;; Transaction 

VIew Opt1011S; AF\iE 
OA SR TC 

Last: ~80 o 
Crnt: 1 02 •lt' -256 1 

(:5 CLK'" .0 

11M START* lit 

11M TM1* +(It 

11M TMO* + 

Plequest 

100 200 
I I 

I<'-(1@CLK.,) 

nnn AD[O: 31 ]"' + --{ .X Addr 

300 
I 

e:rror 

400 500 
I I 

600 
I 

Figure B.l8. The NuBus Master Write operation (two views of the same diagram 

showing different segments). This diagram is combined with that of Figure B.16. 

164 B- Waves Specification Examples 



The Motorola 68000 B.S 

The Motorola 68000 is a widely used microprocessor [:\1otorola81]. This section includes 

Waves diagrams for the memory interface of this processor. The microprocessor interface 

signals are all synchronous to the system clock CCLK) except for the data lines that have setup 

and hold time requirements relative to the acknowledge line (DTACK!). The signals of the 

interface include signals for: address (A[1:23]), data (D[O:I5]), processor status (FC[0:2]), 

read/write select CRWI), address and data strobes (AS/, DSI), and an acknowledge (DTACKI). 

The specifications below are for a lOMHz 68000. 

Read B.S. I 

La:it: 20 
Crnt: 2~2 dt: 212 

(9 CLK .a 

nnnA[1:23] .a ..... 
~ 

nnn FC[O: 2] .a 

nnn RW/ >0 

nnn AS/ .a 

nnn DS/ .a 
(1 @CU<.min 1-01 

nnn DTACK/ ~ 

D[O: 15] ~ 

Figure B.19. The Motorola 68000 Read operation. 

The read operation uses a minimum of four clock cycles to complete. This can be seen by 

adding up the constraints between the events of the sequence (see Figure B.l9). A special 

point to notice is that the acknowledge line can be asserted by the responding circuit (e.g., 

memory) before the data is actually available, but no more than 65ns earlier. This constraint 

ensures that data is always valid in the cycle after the acknowledge is seen. The assertion of 

the address strobe (AS!) signals the start of the operation. 

The Motorola 68000-8.6 
165 



Write 

(9 CLK ~ 

n.M A[1:23] ~ 

n.M FC[0:2] ~ 

n.M RW/ ~ 

nnn AS/ ~ 

n.M DS/ ~ 

Ml1 DTACK/ ~ 

D[O: 15] ~ 

}.; ~~,~~jji:;•J,.,;;''~'' ~.-:r:·.u:::: .. :::::: 
············-:··:·:: ··:-~·-·························· 

......... ,.,_::;:;:!:. ....................................................................................... 1.,;.:_;:;·: •............................ 
(Omin~ to- -1 .._., CU<.min) 

u•••••••• •O•U00''•''4', 
·····-·· 

(1@CU<.~ 
••••••uuuuuuuU•/~,.:.: .... 0 

to- // 
·······;r ... 
/ ->I I j;-(90m l!.X) 

,y 14// 
u•• ~ ...... 2?1l1'.") u u .:.t J ~2?rn'~) 

.,. ····u·····J.u. Oat~. ....., 

B.6.2 

Figure B.20. The :\fotorola 68000 Write operation. 

The write is similar to the read except in the case of the acknowledge and data lines (see 

Figure B.20). The data has 20ns setup and hold times relative to the data strobe (DSI) and the 

data strobe occurs exactly one cycle after the address strobe. The acknowledge signal may be 

asserted immediately by a fast memory or much later by a slow one. There is no constraint on 

the precise position in time of the acknowledge pulse, only that its leading edge occurs while 

the address strobe is asserted. 

166 B- Waves Specification Examples 



Static RAM B.7 

Static RAM memories are commonly connected to custom and off-the-shelf components. The 

Lattice Logic SR64K4 high-speed static memory chips are typical memories of this type 

[Lattice84]. In the diagrams below, the interface of the SR64K4-35 (the 35ns access time 

version of this class of memories) is specified. 

Read 

.ll.DDRESS[0:13] ~ 

CS/ 

WE/ 

DATA[1:4) 

Figure B.21. The Lattice Logic SR64K4-35 Read operation. 

B.7.1 

The overall constraint on the read operation is that it take 35ns to complete (the access time of 

the chips). This is reflected in the constraints labelled tRC (a minimum), tAA (a maximum), 

and tACS (a maximum access time) (see Figure B.21). There are also setup and hold time 

requirements on the write enable signal (WEI) relative to the chip select line (CSI). These 

constraints are labelled tRCS and tRCH and are both 5ns minimum. Other constraints 

include a minimum response time to asserting data (tLz. lOns) and a maximum time for data 

to remain valid after the CS/ is deasserted (tHZ, 20ns). 

Static RAM - B. 7 
167 



Write B.7.2 

As usual, the write operation is similar to the read operation (see Figure B.22). The overall 

constraints are now still present (twc, tcw, and tAW) and are all 35ns minimum. In 

addition, there is a minimum constraint on the width of the WE/ pulse (tWP, 20ns), a setup 

time on data being valid before the write pulse ends (tDW, 30ns), a maximum time on 

deasserting data (tow, IOns) (before the memory may start driving the data lines), and a 

minimum time before data can be asserted on the memory inputs (twz, 20ns) (the memory 

must be allowed to turn off its drivers first). 

tw-

ADDRESS[O: 13] !It 

~ 
Aaaress cc= , 

tCW 

--:~ CS/ II> 
tAW :;::=-

l ~-> 
WE/ 1),> 4( I \ 

-- ""''twF> ·~ 
DATA[1: 4] 1),> ....... D9.t&. 4:------

tWZ-+1 tOW !HOW 

Figure B.22. The Lattice Logic SR64K4-35 Write operation. 

168 B- Waves Specification Examples 



Janus Implementation c 

Janus is a tool for the automatic synthesis of interface transducers. Given Waves timing 

diagrams describing the two interfaces to be connected, it generates the logic specification for 

a transducer. Janus is implemented in LOOPS, an object-oriented programming extension to 

the Interlisp-D programming environment, on Xerox 1109 workstations. 

This appendix is composed of six sections. The first section provides a detailed description of 

the data structures used in Janus. The second section explains the restrictions on the input 

specifications. Section 3 describes an event graph browser that was developed as a debugging 

aid. The fourth section covers the Janus logic circuit library and how its collection of primitive 

elements is accessed. Section 5 outlines the procedure used to simulate and validate the 

output of Janus using the RNL simulator. The appendix concludes with a section on 

portability issues. 

169 



170 

Janus Object Classes C.l 

Janus is implemented in the same programming environment as Waves, Interlisp-D/LOOPS 

running on Xerox 1109 Lisp machines. Having both tools in the same address space avoids the 

need for generating and parsing intermediate files containing the information already present 

in the data structures. Janus generates its data structures by directly translating Waves 

diagrams. Janus' data structures for a particular transducer, like those of a Waves diagram, 

can be saved in a separate file. The object inheritance lattice for Janus is shown in Figure C.l. 

JEventGraph 

___ JOrderingArc 

I 
JArc ==.... 

----- JTimingArc 

// JGra.phSegrnent 

.?- ------ JSingleNode 
, JNode ==.... JGra.phEiement 
~ ----- JSuperNode 

~ ~ JAperiodicSigna.l JComputedSigna.l 

, JSigna.l <__ . . . ------ JCiockPha.seSignal 
JOpera.tion 

----- Jlnterf a.cePin 
JCircuitSigna.l c 

------ Jlnterna.ISigna.l 

Ja.nusTra.nsducer 

Ja.nusMa.nager 

JPeriOdiCSigna.l ------- . 
JCiockSigna.l 

Figure C.l. The Janus object class inheritance lattice. 

There are three principal groups of objects in Janus. The first consists of two object classes: 

JanusManager and JanusTransducer, The JanusManager displays itself as the Janus icon 

and holds pointers to all the transducers currently loaded in the address space and has an 

analogous function to the WavesManager object. An instance of JanusTransducer holds the 

specification of a transducer, namely, the two interfaces being connected and the operations 

supported by the transducer. It also contains pointers to the objects describing the details of 

each interface operation (JOperation). JTransducer is equipped with methods that combine 

the resulting circuits for each operation into a single optimized circuit The JOperation object 

holds pointers to the Waves diagrams that specify the details of the operation and to the event 

graphs corresponding to the diagrams. This object manages the generation of the independent 

event graphs for the two sides of the transducer and interconnects them based on data transfer 

analysis and merging of events. It also holds the description of the circuit that will be used to 

control whether the operation is active (see section 5.4). 

C- Janus Implementation 



The second group of objects is used to represent the event graphs of each operation. The 

high-level object is JEventGraph and it holds pointers to all the nodes and arcs of the graph as 

well as each of the signals and segments defined in the diagrams. Nodes are either single 

events (JSingleNode) or multiple events related by simultaneity constraints or merge labels 

(JSuperNode). The common methods to both node types are in the JNode object. The two 

types of arcs are represented by JOrderingArc and JTimingArc. Again, common functionality 

is contained in the super class JArc. Nodes have pointers to all their incident and emanating 

arcs and arcs have pointers to their head and tail nodes. Nodes also contain a description of 

the circuit that will be used to generate their event(s). Timing arcs store minimum and 

maximum constraint values. No circuit information is held in arc objects. JGraphSegment is 

the precise analog of the Waves diagram segment (WDiagramSegment) and holds similar 

information. In addition, it includes a description of the circuitry that will be used to signal 

whether the segment is currently active (see Section 5.5). A segment holds a description of the 

circuitry that will be used to enable its events (to which it has pointers). Each node also has a 

pointer to its enabling segment. The last set of objects in this group represents the transducer 

signals which have a similar hierarchy to their Waves counterparts (see section A.7). The four 

basic signal types are represented by JAperiodicSignal, JComputedSignal, and the two 

subclasses of JPeriodicSignal (JClockSignal and JClockPhaseSigna[). Their common methods 

and instance variables are in JSignal. These objects hold pointers to their events and are used 

to store information such as signal direction, quiescent levels, and synchronicity constraints. 

Furthermore, they hold a pointer to their corresponding signal in the circuit. 

The third, and last, group of objects is used to represent the circuit realization. A circuit is 

composed of internal signals (JlnternalSigna[) and input/output pins (JlnterfacePin). These 

contain pointers to identically named signals in the various operations of the transducer and 

the structure of the circuit that will be used to generate each output signal. Therefore, there is 

a many-to-one mapping between signals (JSigna[) and circuit signals (JCircuitSignal). This is 

the top-level data structure used to represent the circuit (see section C.4). Interface pins 

correspond to input/output nets (e.g., input/output pads, in the case of a chip interface). 

Internal signals correspond to internal nets including segment and operation control signals. 

Janus Object Classes- C. 1 
171 



172 

Validation of Input Specifications C.2 

Janus aids the designer in validating the input specifications. Waves supports a more general 

model of interface specification than is supported by Janus. For example, Janus requires that 

the logic value of each input and output signal is identical at the beginning and end of each 

interface operation. Waves imposes no such restriction on the signal waveforms that can be 

drawn. Other types of restrictions occur when diagrams are combined. Waves provides no 

checking facilities for merge operations while Janus must ensure that merges are well-formed. 

There are quite a range of validity checks that Janus can make on the input specifications. 

Some may be only warnings (i.e., the specification can still be used to synthesize a circuit) 

while others are errors (i.e., Janus cannot continue). An example of an error is a cyclic data 

transfer. An example of a warning is a maximum timing constraint between two events that 

are eventually merged into a super-node. All of the checks are performed during the 

translation from Waves to Janus data structures after which the user can view a summary of 

the errors and warnings. The following partial list gives an idea of the types of checks 

performed: 

- Constraints on periodic events, with the exception of synchronicity constraints, are 

acceptable. 

- All signal waveforms must start and end at the same logic level in all diagrams where the 

signal is present. 

- No simultaneity relations can exist between input and output events, either explicitly or as 

the result of merges. 

- Place holder events for cross-diagram constraints must be consistent (i.e., the events to be 

merged represent the same logic transition). 

- Signal directions and periodic signals must have consistent properties across diagrams (e.g., 

electrical parameters, clock periods and duty-cycles, etc.). 

- Valid levels on all signals, except computed signals, must be labelled as data carriers. 

- Events with constraints relating them to events on computed signals must include a 

Boolean condition for the logic value of the computed signal. 

- The two sides of an operation specification must be consistent (e.g., at least one event with 

an empty interval of occurrence, a cyclic constraint due to data transfers, etc.). 

C- Janus Implementation 



Event Graph Browser C.3 

A graphical event graph browser was developed as a debugging aid during the development of 

Janus. It is also useful in presenting to the user the result of translating a set of Waves 

diagrams into event graphs. An example browser, showing the event graph corresponding to 

the example specification of section 1.2.1, is shown in Figure C.2. The signals have already 

been split into their input, output, and enable components (see section 5.2.6). 

The browser provides access to each of the nodes of the event graph and shows their 

interconnections using only the ordering arcs. Therefore, successor nodes appear below their 

predecessors. There is no implication of timing relationships in the separation between nodes 

in both the horizontal and vertical dimensions. Had the timing arcs also been included, the 

graph would have been much too cluttered to be a useful visualization. 

The browser is a specialization of the LOOPS class hierarchy browser that is part of the 

Interlisp-D/LOOPS environment [Stefik86]. Menus of functions are available by pushing 

mouse buttons over the nodes. The menu items invoke various procedures on the selected node 

or the graph as a whole. For example, in debugging Janus' algorithms, node data structures 

can be inspected to ascertain whether modifications were made correctly. This is much easier 

and faster with a visual representation of the data structure as opposed to manually chasing 

pointers. Another example comes from experiences in developing the data-path generation 

algorithms. Here, the browser was used to run the interval of occurrence algorithm from a 

selected node and then view the resulting intervals on the other nodes. 

The browser is also useful for the designer that has just completed specifying a design and 

would like another form of visual verification of the specification. For example, it is obvious 

an ordering or simultaneity constraint is missing when the structure of the graph is viewed 

directly. The specification can then be corrected and the diagrams retranslated. 

Event Graph Browser- C.3 
173 



174 

C•·MRDC*I 
O·ADR(0:"19)*! 
C•·BHEI'~*\ 
o-BUSY*\ 
c.-CBRQ*I 
e-ADRj0:19]*1 
i-ADR[0;19J*! 
e-6HEN*/ 
i-BHEN*\ 
i·BUSY*\ 
e-MRDC*I 
i-MRDC*/ 

e-MRDC*\ 
e-ADR[0:19)*\ 
e·BHEN*\ 
C.·BUS"r'*l 
i·ADR[0;19)*X 
i-BHEI'~*X 
i·BUSY*/ 
i-MRDC*X 

o-DATI 0:15! 
o-MACK/ 

O·D . .!!..TI 0:15' 

Figure C.2. An example of a Janus event graph browser. The arcs in the browser 

correspond to the ordering arcs of the event graph. Signals have already been split into 

their input, output, and enable components (the prefixes i-, o-, and e- prefixes, 

respectively. The suffixes /, \, X, !, and ? correspond to the change in logic level 

represented by the node (rising, falling, don't care, valid, and tri-state, respectively). 

C- Janus Implementation 



Representation of the Circuit Library C.4 

The Janus circuit library supports four types of queries. The first accesses technology 

dependent parameters, the second returns the name of a primitive element, the third 

determines the propagation delay of a subcircuit, and the last generates textual output 

describing the subcircuit to a file. These four queries (or procedures) insulate Janus from the 

details of a specific circuit library. Janus assumes the existence of a limited set of primitive 

elements and is not concerned with the details of their implementation. 

The first procedure takes the form: 

( JLibraryParameter parameterN a me). 

It is used whenever Janus requires knowledge of a technology dependent parameter. 

Currently, the only parameter supported is latch setup time (latchSetupTime). 

The second procedure takes the form: 

(JLibraryGet primitiveType inputList). 

It is used whenever Janus requires a primitive element. The primitive type is one of: A~D, 

NAND, OR, NOR, ~OT, SR, D-FF, SYNC, LATCH, DELAY, MUX, and PAD. For the Booelan 

operators, the inputList is simply a list of the inputs to the element. SR has only two inputs, 

set and reset. D-FF, SYNC, and LATCH are different in that their input list has only two 

elements (input and control). For example, for a synchronizer the input list is (input 

clockToSynchronizeTo), for a D-type flip-flop it is (input clock) and for a latch it is (input 

control). For a DELAY the inputList is (input minDelay maxDelay). For a MUX the inputList 

must be of the form (defaultlnput (inputl selectorl) ... (inputN selectorN)). For a PAD the 

inputList is (type output enable) where type is one of Input, Output, OCOutput, 

TriinputOutput, or OCinputOutput and output and enable are the two possible inputs to the 

pad (i.e., an input pad has NIL for both output and enable). The JLibraryGet function returns a 

form for the primitive element and its inputs, that is, the name of the primitive circuit element 

appended to the front of the input list (e.g., (ANDgate inputl input2 ... inputN)). This model 

supports the selection of different primitives depending on the names of the inputs. For 

example, the specifier of the library may want to choose a two-state or one-stage synchronizer 

depending on the clock to which the signal is being synchronized or different types of delay 

elements depending on the amount of delay required. 

The third procedure takes the form: 

(JLibraryDelay circuitForm input). 

It is used to calculate the delay of a path in the circuit from an input through the specified 

circuit (circuitForm). The circuitForm is an S-expression constructed using JLibraryGet. The 

value returned is a pair of delays of the form (minDelay . maxDelay). These represent the 

minimum and maximum delay from the input to the top-level of circuitForm. JLibraryDelay 

calls itself recursively while traversing circuitForm in a depth-first search. The search ends 

Representation ofthe Circuit Library- C.4 175 



176 

when the function encounters an element of the list circuitForm that is equal to input. If input 

is never matched then it is not an input to the circuit described by circuitForm and the 

returned value is (NIL . NIL). This format permits the determination of delay along any 

circuit path. The minimum and maximum propagation delay from all inputs of a subcircuit is 

returned when input is NIL. 

Finally, the last library procedure takes the form: 

( JLibraryOutput object circuitForm outputFile). 

It is used to write an RNL description of circuitForm onto the outputFile. The Janus object 

calling the function is recorded and a net name is created to correspond to that object. The 

name will be used to identify the output net of circuitForm. Any other Janus objects 

encountered in the traversal of circuitForm are also assigned a name. This list of object-net 

correspondences ensures that the subcircuits output onto the file will be properly 

interconnected within the simulator and by implementation tools. When circuitForm is NIL, 

the RNL macro definitions of the library are output. Therefore, (JLibraryOutput NIL 

outputFile) is called first, before any other circuit structures are written to the file. 

C- Janus Implementation 



Simulation and Validation C.5 

Janus generates a description of the synthesized circuit via the library described in the 

previous section. The output file includes a list of all the circuit primitives used and a net list 

describing their interconnections. A gate level description of each primitive element is also 

included (also obtained from the library). This is done to ensure that the design will be 

completely specified within a single file. This makes Janus output more easily portable to 

other tools that may not recognize the same circuit libraries. 

The current format of the file is identical to the input format for the RNL simulator 

[Terman87]. RNL is used to simulate the circuits synthesized by Janus and validate the 

synthesis process. 

There are two reasons for this choice. The first reason is that R~L has a macro capability with 

a Lisp-like syntax. The Janus circuit library includes R~L macros for each of the primitive 

elements. For example, an S-R* latch is specified as: 

(macro sr (s r q) ; name of macro and i/o signals 

(local qbar) ; internal nodes 

(cnor qbar s q) ; one of the two CMOS NOR gates 

(cnor q r qbar) ; the other cross-coupled gate 

; end of macro 

Most logic level simulators require that circuits be input in a flattened description that only 

contains primitive gates. In some extreme cases, a flattened transisitor level description is the 

only allowable input format. 

The second reason is that RNL's event-driven simulation engine includes a model of timing 

delay. To model propagation delay of circuit blocks and delay elements all that is required is 

that a node specification includes the amount by which to delay all simulation events that 

occur on that node (e.g., (delay x 10 10) means that both rising and falling transitions on node 

x are delayed by 10 time units). 

Simulation and Validation- C.S 
177 



178 

Portability Issues 
C.6 

Waves and Janus are implemented in the same single address space programming 

environment. However, their data structures are completely independent due to issues of 

portability to other environments. Obviously, ofthe two, Waves is more difficult to port due its 

heavy use of user interface and graphics primitives. Janus has no such emphasis. The event 

graph browser may fall into this category, but since it builds on a programming tool, its 

functionality is likely to be present in mature object-oriented programming environments. 

The algorithms in Janus are written in a subset oflnterlisp-D and LOOPS that should make 

them automatically translatable to Common Lisp and CLOS [Bobrow88]. 

As with Waves, Janus will need to interact with a CAD database such as OCT to retrieve 

interface specifications and store descriptions of the synthesized circuits [0CT87]. This 

capability should further improve the level of interconnection between Waves and Janus by 

selectively loading and storing objects from both programs when they are referenced, rather 

than requiring them to be simultaneously resident in virtual memory. A practical application 

of this is in providing the user with more direct feedback during specification consistency 

checking. Janus could point directly to the Waves diagram objects that are causing difficulty 

rather than providing just a textual description of the errors and warnings (see section C.2). 

C- Janus Implementation 



Janus Synthesis Examples D 

In this appendix, Janus is applied to three transducer synthesis problems. The first example is 

the Multibus Design Frame, a mixed synchronous and asynchronous design. The second 

example is fully asynchronous design, an adapter between 2-phase and 4-phase handshaking 

protocols. The third example is the SPUR PCC-SBC Interface which interconnects two 

synchronous subsystems that have asynchronous clocks. The Waves specifications for each of 

the six interfaces (two for each example) can be found in Appendix B. 

This appendix is divided into three sections corresponding to each of the three examples. Each 

section is further divided into three subsections. The first subsection shows the event graphs 

generated by Janus from the Waves diagrams. The second subsection details two circuits for 

each example: the first a manual design and the second synthesized by Janus. The last 

subsection concludes with a summary and comparison of the two designs. 

179 



The Multi bus Design Frame D.l 

The Multibus Design Frame connects a simple synchronous interface to the Intel Multibus 

[Borriello85]. Four operations are implemented by this transducer: slave read, slave write, 

master read, and master write. The Waves specifications for each operation can be found in 

sections B. I and B.2. 

The only modifications made to the specification are to include ordering labels on the two write 

operations that prevent the output acknowledge signals from being asserted until the input 

acknowledges are detected. These are from the falling edge of XACK* in Figure B.2 to the 

rising edge of SACK in Figure B.7 and from the rising edge of SACK in Figure B.9 to the 

falling edge ofXACK* in Figure B.5. This is not necessary for the read operations because the 

data dependencies already enforce a similar constraint. 

Event Graphs 

e-ADR 0:19 *\ 
e-BHEt'H<\ 
e- MRDC:+<\ 
i-ADR(0:19]*! 
i-8HE~~*\ 
i-MRDC*/ 

1-0.11.TO 0;15 ;.. 
i-SACK\ 

D.l.l 

Figure D.l. Event graph for the Slave Read operation of the Multibus Design Frame. 

180 D- Janus Synthesis Examples 



e-ADR 0:"19 *\ 
e-BHEN>t<\ 
e-MWTC>+<\ 
~-DAT10:"15j>t<\ 
1-ADR[0:"19]*! 
i-BHEN*\ 
i-DAT[0:"15]*! 
i-MWTC*I 

Figure D.2. Event graph for the Slave Write operation of the Multibus Design Frame. 

The Multibus Design Frame- 0.1 
181 



I·AOR~L0:19J! 
1-MRO/ 

~~-csRQ*~\ o-SREQ*\ 
I:·ADROLO:i 9J4 
-MRO\ - ----/ --//-- 1-SPRN*\1 

I:·SUSY*/;j ----o-6USY*/ 

---o-MRDC*I 
O·AOR(O:i 9]*! 
0-SHEN*\ 
O·SUSY*\ 
o-CBRQ*I 
e·AORtc0:1 ~*I 
I·AOR 0:19 *! 
e-SHEN*I 
i-6HEN*\ 
i-61JSY*\ 
e-MRDC*I 
i-MFIOC*/ 

e-MRDC*/ ------o-MROC*\ lo-6REQ*!I 
i-MF'IDC*\ 

I·DATT10:1 ~~"\1 e-OAT 0;15 *\ ----~~-YACK*'-,\ 
O·XACK*/ 

e~MFiOC:t.:/ I roATib0:15J!\ O·MROC*I O·MACK/ 
i-MFIOC*/ 

~ 7' ------I:·YACf<*/11 e-MROC*\ 
o-XACK*/ e-AOR(0;19]*\ 

o-DATI o:1 5 pq e-6HEN>t<\ 

CK\j 

I· DA vg 1 55~";?\ 1 o-BUSY*I 
e-OAT 0;15 *\ i-ADR[0;19]*X 

i-BHE~j*X 
i-BUSY*/ 
i-MF\OC>t<X 

1:·6USY*! /1 o-BUSY*/ 1-BPRN*Ji 

Figure D.3. Event graph for the Master Read operation of the Multibus Design Frame. 

182 D ~Janus Synthesis Examples 



C•-DAT 0:15 *! 
0-MWTC*/ 
o-ADR[0:19)*! 
v-BHEN>I<\ 
o-BUSY>I<\ 
v-CBRQ>I</ 
~-ADRJ0:19]*/ 
1-ADR[0;19]*! 
e-BHE~~*/ 
i-BHEI'l*\ 
i-BUSY*\ 
~-DAT[Ct;15)*/ 
1-DATL0!15}*! 
e-MWTC*/ 
i-MWTC>t:l 

e-. .!l..DR 0:19 *\ 
e-BHEI'H<\ 
e-MVv'TC*\ 
e-DAT(0:15)*\ 
I)-BUSY*/ 
i-ADR[0;19}+<)( 
i·BHEI'l*:O:: 
i-BUSY*/ 
i-DAT[0:15)*X 
i·MWTC*:X: 

Figure D.4. Event graph for the l\iaster Write operation of the Multibus Design Frame. 

The Multi bus Design Frame- 0.1 
183 



Janus and Designer Generated Circuits D.1.2 

The manually generated design for the Multibus Design Frame is presented in two parts (see 

Figures D.5 and D.6). The design generated by Janus is presented in four parts (Figures D.7 

through D.lO). The Janus design, as shown, has circuitry for each operation combined into a 

single circuit but has not been further optimized. For example, circuitry is clearly duplicated 

in many cases and some possible transformations to combine flip-flops and synchronizers are 

not shown. 

In all the figures of this section, the Multibus Design Frame interface is on the left and the 

Multibus is on the right. Only signals that connect to one of the two boundaries are part of the 

interface. Internal signals are not connected to either side. In the Janus circuit, signal names 

in brackets correspond to the operation enable signals generated for each interface operation. 

When these signals appear under an S-R* latch it signifies that the latch is reset whenever the 

operation enable signal is low. 

»-----....---1 MRDC* 

X>------+--,,---1 MWTC* 

MACK 

~----~>CI------+~~XACK* 

SRD 

SWR 

Figure D.5. Manually designed circuit for the Multibus Design Frame (part one of two, 

see Figure D.6) [Borriello85]. 

184 D- Janus Synthesis Examples 



MRDC-~CMD 
MWTC-~ 

MRDCs -~ CMDs 

AE N --[><>----\ 
MWTCo 

Q/ 

~DEN 

:::: ____ L_§:1 ...... : __ ~ .... ~ 

::x>----1 B PRO* 

::x>----1 B R E Q * 

Cm:::JII--[>o--~ S Q CMDE N 

)0-+---------l R Q/ 

DATO t-------i 

ADRO t--------1 

SACK-~~ 
MWR-~~DLO 
PHI1/ i' 

MWR-~~ 
MRD-~~ALO 
PH11/ i' 

DEN ~----IDAT* 

1-------1 ADR* 

MRDCo ~DLI 

MWTC~ 
MWTCs~ 

CMD --fS01- All 

CMDs~ 

Figure D.6. Manually designed circuit for the Multibus Design Frame (part two of two, 

see Figure D.5) [Borriello85). 

The Multi bus Design Frame- 0.1 
185 



i-XACK* ---;:::;:::;;::;;::;:::;~ 
o-MWTC* 

o-BREQ* -----<1 
o-CBRQ* 

i-BUSY* 
i-BPRN* 

o-BREQ* 
e-ADR* 

o-MRDC* 

o-BREQ* 
o-CBRQ* 

I-BUSY* 
1-BPRN* 

o-BREQ* 
e-ADR* 

o-MWTC* 

o-XACK*' -------<1 
i-SACK ------! 

i-MWTC* -----t 
<SW> -----1 

i-MRDC* -----1 
<SR> -----1 

Q e-MRDC* 

> 

s 
Q e-MWTC* 

R* 

o-XACK* 

o-MRDC*fi 
Q o-MRDC*I 

<MR> R* o-XACK* fi 
Q o-XACK*! 

o-MWTC* fi <SW.SR > R* 
Q o-MWTC*! 

<MW> R* 

XACK* 

Figure D. 7. Janus designed circuit for the ~ultibus Design Frame (part one of four, see 

Figures D.8, D.9, and D.lO). 

186 D- Janus Synthesis Examples 



MRD t--- i-MRD 

MWR 1--- i-MWR 

MACK 1---"o'-'-M""'-'A""C:...:.K_~ 

<MW> 
i-MWR 
<MR> 
i-MRD 

1>----- 1-XACK* 
"-.~!>----- o-MACK! 

f------- o-MACK 

SRD ro'-'-S:.:..R:.:D __ --; Q 

< 
SACK i-SACK 

SWR ro'-'-S::..:W~R ----1 Q 

< 

..........,(>----- i-MRDC* 
1>----- o-SRD! 

AdrMatch 

!>------ i-MWTC* 
"--">----- o-SWR! 

o-MACKfi Q o-MACK! 
1-SACKfi 

Q i-SACK! 
<MW,MR> R* <SW,SR> R* 

o-SRDfi Q o-SRDI 
<SR> R* 

i-MRDfi Q 1-MRDI 
<MR> R* 

i-MWRfi Q i-MWR! 
<MW> R* 

o-SWRfi Q o-SWR' 
<SW> R* 

Figure D.B. Janus designed circuit for the Multibus Design Frame (part two of four, see 

Figures D.7, D.9, and D.lO). 

The Multi bus Design Frame- 0.1 187 



<MR> 
i-MRD 

<MW> 
i-MWR 

<MR> 
i-MRD 

<MW> 
i-MWR 

o-BREQ* 
o-BUSY* 

o-BREQ* 
o-CBRQ* 
i-BUSY* 
1-BPRN* 

"0" 

R> 

>-------1 BHEN* 

e-BHEN* 

BREQ* 

BPRO/ 

CBRQ* 

i-BPRN* ----1 BPRN* 

i-BUSY* 

o-BUSY* 

e-ADR* 
e-BHEN* 
e-MRDC* 
e-MWTC* 

BUSY/ 

o-BREQ*fi 
Q o-BREQ*I 

o-CBRQ* fi . <MW,MR> R* 

<MR> 
o-MRDC* 
<MW> 

o-MWTC* 

Q o-CBRQ*I 
<MW,MR> R* 

Figure D.9. Janus designed circuit for the Multibus Design Frame (part three of four, see 

Figures D.7, D.B, and D.lO). 

188 D- Janus Synthesis Examples 



<MR> =:ss~ia= i-MRD ~ ).._, y 10 11\-<J.-J L'0.._ ALO 

<MW> :::;:;~~--,... 1v--
i-MWR L{ 10 llkL/ i-M~S~t. 

<SR> 
i-SACK 

<SW> 
i-MWTC* 

L{toll~ 
10 

<MW> 
i-MWR 

L{ 10 II J)-,_2>-- DLO 

-:n r <MR> --------.,.-._ 

All 

L{ to l!kL/ i-XACK* ~ 
y 10 1!)-L' LD-- Dll 

L{ 10 II}IY 

DATO~---------[~L~at~c~h~~»-------------i 
L_ ___________ ~ID~LO:_~~~~~r-----~e~-D=A~T-* __ _j:~----~DAT* DATI f Latch 

l_-------i:g~~-D~--~~~D~ll--~ ADRO f Latch • 

l_ ____________ ~~A~LO:_~o-~~~J-----~e~-A=D=R~*~===f------~ADR* ADRI r Latch 

I All AdrMatch E 
i-MRD~S t-o-MACK Q <MR> 

o-BUSY• R* . 
a-MACK! '-----' i-MWR ~ S t-

o-MACK Q <MW> 
o-BUSY"' R• 
a-MACK! ------' 

i-MRDC* ~ S t-i-SACK Q < SR > 

a:itgl _R_* __ _,_ ~ 
o-XACK*! i-MWTC* S t-i-SACK Q <SW> 

i-SACK! R* 
o-XACK• -----' 

o-XACK*! 

Figure D.JO. Janus designed circuit for the Multibus Design Frame (part four offour, see 
Figures 0.7, 0.8, and 0.9). 

The Multi bus Design Frame- D.1 189 



Summary and Comparison D.1.3 

The many assumptions and simplifications that designers make during the design process 

makes it difficult to compare two implementations of a circuit as complex as the Multibus 

Design Frame. In Table D.1, the two circuits are compared in terms of the total number of 

logic gates used. Based on this metric, Janus generates a design that is 17% larger than the 

manually generated design. The numbers in the table are easily derivable from the circuit 

diagrams of section D.1.2. The only complication is that the counts reflect the size of the Janus 

circuit after optimizations to remove redundant circuitry. This can be seen in the logic to 

generate the following groups of signals: e-MRDC* and e-MWTC*; o-MACK, o-BREQ*, and 

o-CBRQ*; and o-CBRQ* and o-BUSY*. Optimizations to transform an S-R* latch and its two 

flip-flop or synchronizer inputs into a single synchronizer are possible in the circuitry that 

generates o-SRD and o-SWR. 

Part #Used 

Logic gate 120 

SR 8 

D-FF 3 

SR-FF 

Synchronizer 4 

Latch 72 

SOns delay 2 

TOTAL 

Part #Used 

Logic gate 124 

SR 24 

D-FF 3 

Synchronizer 6 

Latch 72 

10ns delay 8 

SOns delay 1 

100ns delay 2 

TOTAL 

Manual 

Gates 

1 

2 

10 

11 

10 

s 
s 

Janus 

Gates 

1 

2 

10 

10 

s 
2 

10 

20 

Total 

120 

16 

30 
11 

40 

360 
10 

587 

Total 

124 

48 
30 
60 

360 
16 

10 

40 

688 

Table D.l. Comparison of the two circuits for the Multibus Design Frame. The circuit 

synthesized by Janus is 17% larger and 9% faster than the manually designed version. 

Input/output pads are excluded from the gate counts (there are 44 pads). 

190 D- Janus Synthesis Examples 



Although the circuit generated by Janus is larger in size, in terms of performance, it is 9% 
faster than the manually generated design. This is due to a simplifying assumption on the 
part of the designer that decreases the amount of parallelism in the circuit. The specification 
of the MDF states that operations begin on the leading edges ofMRD and MWR, however, in 
the manual design the trailing edges of these signals are used to start the operations. This 
.simplification completely orders the event graph and eliminates many possible race conditions 
for which Janus generated corrective circuitry. The 9% is derived from the expected duration 
of the operation (lOOOns) and the savings in not waiting for the trailing edge of MRD/MWR 
(90ns). 

The Multi bus Design Frame- 0.1 191 



2-Phase to 4-Phase Protocol Adapter D.2 

Janus is restricted to interface operations whose logic signals start and end at the same logic 

level. Furthermore, operations cannot overlap in time. Unfortunately, the specification of the 

2-phase and 4-phase protocols in section B.3 do not meet these criteria. A new set of 

specifications that does is shown in Figure D .11. 

Req2 -!{! 

Data2[0:31] -!{! 

Ack.2 ~ 

Req4 ~ 

Data4[0:31] ~ 

.A.ck4 -!{! 

Figure D.ll. Waves timing diagram specification for the 2-phase to 4-phase protocol 

adapter. These are different than those of section B.3 due to the restriction imposed by 

Janus that, for every interface operation, all signals start and end at the same logic 

levels. 

Basically, the operations have been duplicated into a double handshake operation whose 

signals do return to the same levels. Furthermore, ordering labels exist between the first 

rising edge of Ack4 and the rising edge of Ack2 as well as the second rising edge of Ack4 and 

the falling edge of Ack2. Another set of ordering labels is needed to enforce the constraint that 

the operations not overlap. These labels are placed from the first falling edge of Ack4 to the 

falling edge of Req2. Unfortunately, this is not quite the same specification as was used to 

manually design the circuit [Sproull86]. Therefore, Janus should generate a smaller, less 

parallel, circuit for this example. 

192 D- Janus Synthesis Examples 



Event Graph D.2.1 

Figure D.12. Event graph for the double handshake operation. 

2-Phase to 4-Phase Protocol Adapter- D.2 
193 



Janus and Designer Generated Circuits D.2.2 

In the two figures of this section, the 2-phase protocol interface is on the left and the 4-phase 

protocol interface is on the right. Only signals that connect to one of the two boundaries are 

part of the interface. Internal signals are not connected to either side. In the Janus circuit, 

the signal name in brackets corresponds to the operation enable signal generated for the 

double handshake operation. When this signal appears under an S-R* latch it signifies that 

the latch is reset whenever the operation enable signal is low . 

.. - .................. - - .. - ........ - - .... - ...... - - ...... .. 
' ' 

'IN~OUT 

~N 
OUT1n· T IN 
OUT2 

OUT1 

s 
Q OUT 

R* 

EN 
OUT2 

Figure D.13. Manually designed circuit for the 2-phase to 4-phase protocol adapter 

[Sproull86]. 

s 

ACK2 1------'--f Q 
s Q 1------t REQ4 

R* 

R* <DH> 

<DH> ~~-------------~--------------~ACK4 

DATA21-----------------------------------------------------
~DATA4 

REQ23r-
ACK2 <DH > 
REQ4 
ACK4 

Figure D.14. Janus designed circuit for the 2-phase to 4-phase protocol adapter. 

194 D- Janus Synthesis Examples 



Summary and Comparison D.2.3 

The circuit generated by Janus is of equivalent performance to the manually designed version. 

Its size, as expected, is smaller than the manual design (by 39%) since the circuit implements a 

less parallel specification. Note also that the operation enabling circuit is a simple AND gate 

rather than the S-R* latch of the previous example. This is true because there is only one 

transducer operation and non-quiescent levels on its signals indicate when the operation is in 

progress. 

Part #Used 

Logic gate 6 

C-element 

Toggle 

TOTAL 

Part #Used 

Logic gate 10 

SR 2 

TOTAL 

Manual 

Gates 

1 

5 
12 

Janus 

Gates 

1 

2 

Total 

6 

5 
12 

23 

Total 

10 

4 

14 

Table D.2. Comparison of the two circuits for the 2-phase to 4-phase protocol adapter. 

The circuit synthesized by Janus is 39% smaller and of equal performance to the 

manually designed version. 

2-Phase to 4-Phase Protocol Adapter- 0.2 195 



SPUR PCC-SBC Interface D.3 

The SPUR PCC-SBC Interface is an interface transducer with three interface operations. The 

specifications for these and their interrelations are given in section B.4. 

Event Graphs D.3.1 

I·Cit'COnflt'm\ 

Figure D.15. Event graph for the PCC-to-SBC Request operation of the SPCR PCC-SBC 

Interface. 

196 D- Janus Synthesis Examples 



r 

O·PCC . .!!..Cfo:.C! 
O·PCC.!!..Ck/ 

l·PCCAcKc; 
i·PCC.!!..Ck\ 

Figure D.16. Event graph for the SBC-to-PCC Request operation of the SPUR PCC-SBC 

Interface. 

~----- ~ 
lo-GirantCs.cl1e!l ~ 

o-Has:Cacl1e\ 

I· cacneRel \ 

Figure D.17. Event graph for the Cache Handshake operation of the SPUR PCC-SBC 

Interface. 

SPUR PCC-SBC Interface- 0.3 
197 



Janus and Designer Generated Circuits D.3.2 

In the two figures of this section, the SPUR Processor Cache Controller interface is on the left 

and the SPUR Snooping Bus Controller interface is on the right. Only signals that connect to 

one of the two boundaries are part of the interface. Internal signals are not connected to either 

side. In the Janus circuit, signal names in brackets correspond to the operation enable signals 

generated for each interface operation. When these signals appear under an S-R* latch it 

signifies that the latch is reset whenever the operation enable signal is low. 

Grant- J-------------.----i S C 1-----------1 Grant
Cache , 1 Y!J Cache 

L----i--
5
., .-J D;.EF r ___ I_P_hi_A ______ ___, 

HasCache .- Q _j l , 
I Pht12 I 

-,_Q_I_R_.Lf D;.EF 11---.1....--il SYNC~ Q 
'A. - Ql R-

I Phi12 I Phi12-4 .____...J 

S 1--~'----t CacheRel 

SBCintN J-----------11 Latch 11-----------------1 SBCinum 
l J 1---------------1 SBCinuml 

SBCReqC J---------------------!1 Latch 11-------1 SBCReqC 

SBCReq ~ SY~C ~~·--t Q S 1-----..,-11 TPulse ~ l Phil SBCReq 

1Phi12 rQ/ Rh clr 
I L---------,, ,.-----JW:.!!.__,, 

, I 1 SY~Cc 11------1 PCCAck 

DiF TPulse_~ I PhiA 
PCCAck J----__...J-1 

Phi12 I Phi12-4 
PCCAckC t-------il Latch 11------------------1 PCCAckC 

L 

PCCReqC t-------1: Latch It--------~~ D;,EF ~1---------t PCCReqC 

I Phi4 
PCC Req 1-T--'T'-l I ~ ...---------,, clr 

Y DJF TPulse ~r s Q -1 SY~Cc 1-------1 PCCReq 

Phi12 

I Pht12-4 ~ R Q/ 1 I PhiA 

SBCAck l-+----ll SY_!JC Jf---------11------' 

I Pht12 
SBCAckC H-----------t--------!1 Latch :1--------t SBCAckC 

L__j TPulse L
1
1--__ l..___-t SBCAck 

-~ Phil 

Clr- ~ Confirm 1-+-------t Q _ 

Phi4 ,_SR_--...J_jr-S---,1---------------f Confirm-
Q/ -1 ~c 1 Out 

I PhtA 

Ph1l 
1------1 SetDirty 

SBCDirty 1---------l Q S 1-+---~~ TPulse :1-----1 
- Ql R r-

Figure D.18. Manually designed circuit for the SPUR PCC-SBC Interface [Gibson86]. 

198 D- Janus Synthesis Examples 



-Grant 
Cache 

HasCache 

SBCintN 

SBCReqC 

SBCReq 

PCCAck 

PCCAckC 

PCCReqC 

PCCReq 

SBCAck 

SBCAckC 

Clr
Confirm 

SBCDirty 

1 SY_.tJC 1 

s~ I PhiA 
Q -1 DtF I 1 SY_.tJC ~ CRI s 

R* Q 

<CH> I Phl12 I Phi12 
R* ~ <CH> 

J Latch L 
I l 

1 )...-J 

~ Latch ~ 

1 [}-J 

SBCReql s 
Q 

R* ~ <SR> 

5 
_rl_ SYllC 4 Us Q~ PCCAck! 

- Q I Phi12 

R* Lf SY~C}J R:SR> 
<SR> D~F 

I Phi12 
I PhiA 

r--' 1 

1 Latch 1 

I Latch r 
s ~ DiF :rJ L s 

L{, 

opsv~ch_ ~Q R* 
Phi12 I <PR> - R* s 

<PR> ILf SY~C l I PhiA Q 

SBCAck! I r- R* 

I Phl12 <PR> 
L Latch J 

PCCReq- S 
10 l )--l 

Hs'Ylc, Q 
R* 

I PhiA s 
1 SY1JC~ Q 

I Ph112 
R* f- PCCReq 

PCCMn -QSBCM 
Q PCCAck 1 SBCAck! 

<SR> R* <PR> 

PCCR•q~ ~SBCR•q 
SBCAck' * Q <PR> <SR> PCCAck' 
SBCAck R PCCAck 

GrantCache ~ :. Q~ <CH> ~C"h"'' CRI 

Figure D.19. Janus designed circuit for the SPUR PCC-SBC Interface. 

SPUR PCC-SBC Interface- D.3 

Grant
Cache 

Cache Rei 

SBCinum 

SBCinuml 

SBCReqC 

SBCReq 

PCCAck 

PCCAckC 

PCCReqC 

PCCReq 

SBCAckC 

SBCAck 

Confirm
Out 

SetD1rty 

199 



Summary and Comparison D.3.3 

The circuit generated by Janus is 11% smaller for this example with similar performance. The 

transition pulse generator used in the manual design is identical to the latch control circuits 

synthesized by Janus and are therefore given the same gate count in Table D.3. The actual 

SPUR PCC-SBC Interface is a dynamic-CMOS design. Since Janus only synthesizes static 

designs, the comparison is based on static equivalents of the circuit elements in the manual 

design. This method of comparison can easily account for the difference in circuit size. 

Part #Used 

Logic gate 8 

SR 6 

D-FF 7 

Synchronizer 5 

Synchronizer (with clear) 2 

Latch 15 

Transition pulse (leading) 5 

TOTAL 

Part #Used 

Logic gate 12 

SR 13 

D-FF 

Synchronizer 7 

Latch 15 

1 Ons delay 4 

TOTAL 

Manual 

Gates 

1 

2 

5 

5 

5 

5 

6 

Janus 

Gates 

1 

2 

5 

5 

5 

6 

Total 

8 
12 

35 

25 

10 

75 
30 

195 

Total 

12 

26 
5 

35 

75 
24 

177 

Table D.3. Comparison of the two circuits for the SPUR PCC-SBC Interface. The circuit 

synthesized by Janus is 11% smaller and of equal performance to the manually designed 

version. 

200 D- Janus Synthesis Examples 



References 

The references are divided into groups corresponding to the three main parts of this 

dissertation: Part I (Chapters 2 and 3), Part II (Chapters 4 and 5), and the four appendices (A, 

B, C, and D). Some references may be duplicated if they are referenced in more than one part. 

201 



Part I 

[Agerwala79] T. Agerwala, Putting Petri Nets to Work, IEEE Computer, December 1979. 

[Altman80] A. Altman, A. Parker, The Slide Simulator: A Facility for the Design and 

Analysis of Computer Interconnections, ACM, 1980. 

[Arnold85] J. Arnold, The Knowledge-Based Test Assistant's Wave/Signal Editor: An 

Interface for the Management of Timing Constraints, Proceedings of the 

Second Conference on Artificial Intelligence Applications, December 1985. 

[Barbacci76] M. Barbacci, The Symbolic Manipulation of Computer Descriptions: ISPL 

Compiler and Simulator, Technical Report, Department of Computer Science, 

Carnegie-Mellon University, April1976. 

[Barbacci81] M. Barbacci, Instruction Set Processor Specification (ISPS): The Notation and 

its Applications, IEEE Transactions on Computers, January 1981. 

[Bobrow83] D. Bobrow, The LOOPS Manual, Xerox Artificial Intelligence Systems, 

December 1983. 

[Bochmann82] G. Bochmann, Hardware Specification with Temporal Logic: An Example, 

IEEE Transactions on Computers, Vol. C-31, No.3, March 1982. 

[Borriello85] G. Borriello, R. Katz, Design Frames: A New System Integration Methodology, 

Chapel Hill Conference on VLSI, May 1985. 

[DenBeste86] W. Den Beste, Tools for Test Development, VLSI Systems Design l\fagazine, 

July 1986. 

[Dill85] 

[Goos80] 

D. Dill, E. Clarke, Automatic Verification of Asynchronous Circuits Vsing 

Temporal Logic, Chapel Hill Conference on VLSI, May 1985. 

G. Goos, J. Hartmanis, Eds., Net Theory and Applications, Lecture Notes in 

Computer Science 84, Springer-Verlag, 1980. 

[Granacki86a] J. Granacki, A. Parker, A Natural Language Interface for Specifying Digital 

Systems, First International Conference on Application of Artificial 

Intelligence to Engineering Problems, Southampton, England, April1986. 

[Granacki86b] J. Granacki, l:nderstanding Digital System Specifications Written in Natural 

Language, Ph.D. Dissertation, Department of Electrical Engineering, 

Vniversity ofSourthern California, Report No. CRI-87-02, December 1986. 

[lnte182] 

[Ikos86] 

[Kara86] 

[Katz83] 

[Kelly84] 

202 

Intel Multibus Specification, Intel Corporation, 1982. 

Ikos Systems, Accelerated Stimulation and Simulation, Product Showcase, 

VLSI Systems Design Magazine, June 1986. 

L. Kara, R. Rastogi, K. Kawamura, TDS: An Expert System to Automate 

Timing Design For Interfacing VLSI Chips in l\ficrocomputer Systems, 

International Conference on Computer-Aided Design, November 1986. 

R. Katz, S. Weiss, Chip Assemblers: Concepts and Capabilities, 20th Design 

Automation Conference, 1983. 

V. Kelly, The CRITTER System: Automated Critiquing of Digital Circuit 

Designs, 21st Design Automation Conference, 1984. 

References 



[Kimura87] S. Kimura, S Yajima, The Description and Verification of Input Constraints 

and Input-Output Specifications of Logic Systems Using a New Extended 

Regular Expression, International Conference on VLSI (VLSI87), August 

1987. 

[Koomen85] C. Koomen, Algebraic Specification and Verification of Communication 

Protocols, in Science of Computer Programming 5, North-Holland, 1985. 

[Milner80] R. Milner, A calculus of communicating systems, Lecture ::-.J'otes in Computer 

Science, Vol. 92, Springer-Verlag, 1980. 

[Misunas73] D. Misunas, Petri Nets and Speed Independent Design, Communications of the 

ACM, Vol. 16, No.8, August 1973. 

[Molnar85] C. Molnar, T. Fang, F. Rosenberger, Synthesis of Delay-Insensitive Modules, 

1985 Chapel Hill Conference on VLSI, May 1985. 

[Moszkowski85] B. Moszkowski, A Temporal Logic for Multilevel Reasoning about Hardware, 

IEEE Computer, February 1985. 

[Nestor86] J. Nestor, D. Thomas, Behavioral Synthesis with Interfaces, International 

Conference on Computer-Aided Design, November 1986. 

[Nestor87a] J. Nestor, Specification and Synthesis of Digital Systems with Interfaces, Ph. 

D. Dissertation, Department of Electrical and Computer Engineering, 

Carnegie-Mellon University, Report No. CMVCAD-87-10, April1987. 

[Nestor87b] J. Nestor, private communication, July 1987. 

[Parker81] A. Parker, J. Wallace, SLIDE: An VO Hardware Descriptive Language, IEEE 

Transactions on Computers, Vol. C-30, No.6, June 1981. 

[Parker85] A. Parker, N. Park, Interface and VO Protocol Descriptions, Section 3.3 of 

Advances in CAD for VLSI, Vol. 7: Hardware Description Languages, R. 
Hartenstein, Editor, North-Holland, 1985. 

[Petri62] C. Petri, Fundamentals of a Theory of Asynchronous Information Flow, 

Proceedings of the IFIP Congress 1962, Munich, North-Holland, 1962. 

[Rony80] P. Rony, Interfacing Fundamentals: Timing Diagram Conventions, Computer 

Design, January 1980. 

[Stefik86] M. Stefik, D. Bobrow, Object-Oriented Programming: Themes and Variations, 

Artificial Intelligence Magazine, Volume VI, Number 4, Winter 1986. 

[Texaslnstruments85] Texas Instruments NuBus Specification, Texas Instruments 

Incorporated, 1985. 

[Thomas83] 

[Vissers76] 

[Xerox86] 

Part I 

D. Thomas, et al., Automatic Data Path Synthesis, IEEE Computer, December 

1983. 

C. Vissers, Interface, A Dispersed Architecture, Proceedings of the Third 

Annual Symposium on Computer Architecture, 1976. 

Xerox Corporation, Interlisp-D Reference Manual (Koto Release), Xerox 

Artificial Intelligence Systems, 1986. 

203 



Part II 

[Bobrow83] D. Bobrow, The LOOPS Manual, Xerox Artificial Intelligence Systems, 

December 1983. 

[Brayton87] R. Brayton, et. al., MIS: A Multiple-Level Logic Optimization System, IEEE 

Transactions on Computer-Aided Design, Vol. CAD-6, No.6, November 1987. 

[Burns86] J. Burns, A. Newton, SPARCS: A New Constraint-Based IC Symbolic Layout 

Spacer, Procedings of the Custom Integrated Circuits Conference, 1986. 

[Chu86a] T. Chu, On the Models for Designing VLSI Asynchronous Digital Systems, 

Integration, the VLSijournal, Vol. 4, August 1986. 

[Chu86b] T. Chu, L. Glasser, Synthesis of Self-Timed Control Circuits from Graphs: An 

Example, Proceedings of the IEEE International Conference on Computer 

Design, October 1986. 

[Chu87] T. Chu, Synthesis of Self-Timed VLSI Circuits from Graph-theoretic 

Specifications, Proceedings of the IEEE International Conference on 

Computer Design, October 1987. 

[Del\ficheli85] G. DeMicheli, R. Brayton, A. Sangiovanni-Vincentelli, Optimal State 

Assignment for Finite-State Machines, IEEE Transactions on 

Computer-Aided Design, Vol. CAD-4, July 1985. 

[Fisher81] J. Fisher, Trace Scheduling: A Technique for Global Microcode Compaction, 

IEEE Transactions on Computers, Vol. C-30, No.7, July 1981. 

[Gajski83] D. Gajski, R. Kuhn, Guest Editors' Introduction: New VLSI Tools, IEEE 

Computer, Vol. 16, No. 12, December 1983. 

[Girczyc85] E. Girczyc, R. Buhr, J. Knight, Applicability of a Subset of Ada as an 

Algorithmic Hardware Description Language for Graph-Based Hardware 

Compilation, IEEE Transactions on Computer-Aided Design, Vol. CAD-4, No. 

2, April1985. 

[Hollaar82] L. Hollaar, Direct Implementation of Asynchronous Control Units, IEEE 

Transactions on Computers, Vol. C-31, :'>l'o. 12, December 1982. 

[Leive81] G. Leive, D. Thomas, A Technology Relative Logic Synthesis and ::vlodule 

Selection System, 18th Design Automation Conference, 1981. 

[Misunas73] D. Misunas, Petri Nets and Speed Independent Design, Communications of the 

AC:vl, Vol. 16, No.8, August 1973. 

[Molnar85] C. Molnar, T. Fang, F. Rosenberger, Synthesis of Delay-Insensitive Modules, 

1985 Chapel Hill Conference on VLSI, May 1985. 

[Nestor86] J. Nestor, D. Thomas, Behavioral Synthesis with Interfaces, International 

Conference on Computer-Aided Design, November 1986. 

[Nestor87] J. Nestor, Specification and Synthesis of Digital Systems with Interfaces, Ph. 

D. Dissertation, Department of Electrical and Computer Engineering, 

Carnegie-Mellon University, Report No. CMUCAD-87-10, Apri11987. 

[Parker86] A. Parker, J. Pizarro, M. Mlinar, MAHA: A Program for Datapath Synthesis, 

23rd Design Automation Conference, 1986. 

204 References 



r 
[Paulin87] 

[Rudell87] 

P. Paulin, J. Knight, Force-Directed Scheduling in Automatic Data Path 

Synthesis, 24th Design Automation Conference, 1987. 

R. Rudell, A. Sangiovanni-Vincentelli, Multiple-Valued Minimization for PLA 

Optimization, IEEE Transactions on Computer-Aided Design, Vol. CAD-6, No. 

5, September 1987. 

[Sangiovanni86] A. Sangiovanni-Vincentelli, A Design System for the Automatic Synthesis of 

VLSI ICs, IEEE International Conference on Computer Design, October 1986. 

[Stefik86] 

[Thomas83] 

[Walker85] 

[Xerox86] 

Part II 

M. Stefik, D. Bobrow, Object-Oriented Programming: Themes and Variations, 

Artificial Intelligence Magazine, Volume VI, Number 4, Winter 1986. 

D. Thomas, et al., Automatic Data Path Synthesis, IEEE Computer, December 

1983. 

R. Walker, D. Thomas, A Model of Design Representation and Synthesis, 22nd 

Design Automation Conference, 1985. 

Xerox Corporation, Interlisp-D Reference Manual (Koto Release), Xerox 

Artificial Intelligence Systems, 1986. 

205 



Appendices 

[Bobrow83) 

[Bobrow88] 

[Borriello85] 

[Intel82] 

[Gettys86] 

[Gibson86] 

[Hi1186] 

[Lanning86] 

[Lattice84] 

[Molnar85] 

[Motorola81] 

[0CT87] 

[Sproul186] 

[Stefik86] 

[Terman87] 

D. Bobrow, The LOOPS Manual, Xerox Artificial Intelligence Systems, 

December 1983. 

D. Bobrow, et. al., Common Lisp Object System Specification, informally 

circulated document, March 1988. 

G. Borriello, R. Katz, Design Frames: A New System Integration Methodology, 

1985 Chapel Hill Conference on VLSI, May 1985. 

Intel Multibus Specification, Intel Corporation, 1982. 

J. Gettys, X Version 10 Protocol Guide, Technical Report, Massachusetts 

Institute ofTechnology, 1986. 

G. Gibson, D. Wood, S. Eggers, Detailed Functional Description of the 

Interface Between the Processor Cache Controller and the Snopping Bus 

Controller, SPUR Project Technical Documentation, Computer Science 

Division, University of California, Berkeley, 1986. 

M. Hill, et. al., Design Decisions in SPUR: A VLSI Multiprocessor, IEEE 

Computer, November 1986. 

S. Lanning, Simple Windows Documentation, Xerox Palo Alto Reseach Center 

Internal Documentation, March, 1986. 

SR64K4 High-Speed 64K Static RAM (16Kx4) Technical Data Sheets, Lattice 

Seminconductor Corporation, 1984. 

C. Molnar, T. Fang, F. Rosenberger, Synthesis of Delay-Insensitive Modules, 

1985 Chapel Hill Conference on VLSI, May 1985. 

Motorola Microprocessors Data Manual, Motorola, Incorporated, 1981. 

OCT Tools Distribution 2.0, Electronics Research Laboratory, University of 

California, Berkeley, ~ovember 1987. 

R. Sproull, I. Sutherland, Asynchronous Systems, Textbook in preparation, 

Sutherland, Sproull, and Associates, Incorporated, 1986. 

M. Stefik, D. Bobrow, Object-Oriented Programming: Themes and Variations, 

Artificial Intelligence Magazine, Volume VI, ~umber 4, Winter 1986. 

C. Terman, RNL 4.2 Cser's Guide, VLSI Design Tools Reference Manual, 

Northwest Laboratory for Integrated Systems, Cniversity of Washington, 

February 1987. 

[Texaslnstruments85) Texas Instruments NuBus Specification, Texas Instruments 

Incorporated, 1985. 

[Xerox86] 

206 

Xerox Corporation, Interlisp-D Reference Manual (Koto Release), Xerox 

Artificial Intelligence Systems, 1986. 

References 


